158 research outputs found

    Benthic-pelagic coupling and trophic relationships in northern Baltic Sea food webs

    Get PDF
    Understanding marine ecosystem structure and functioning is crucial in supporting sustainable management of natural resources and monitoring the health of marine ecosystems. The current study utilized stable isotope (SI) mixing models and trophic position models to examine energy flow, trophic relationships, and benthic-pelagic coupling between food web components. Roughly 1900 samples from different trophic levels in the food web, collected during 2001-2010 from four northern and central sub-basins of the Baltic Sea, were analyzed for SI ratios of carbon and nitrogen. Trophic structure of the food webs among the sub-basins was consistent, but there were differences between the proportions of energy in different trophic levels that had originated from the benthic habitat. Mysids and amphipods served as important links between the benthic and pelagic ecosystems. Much (35-65%) of their energy originated from the benthic zone but was transferred to higher trophic levels in the pelagic food web by consumption by herring (Clupea harengus). One percent to twenty-four percent of the energy consumption of apex seal predators (Halichoerus grypus and Pusa hispida) and predatory fish (Salmo salar) was derived from benthic zone. Diets of mysids and amphipods differed, although some overlap in their dietary niches was observed. The food web in the Gulf of Finland was more influenced by the benthic subsystem than food webs in the other sub-basins. The baseline levels of delta C-13 and delta N-15 differed between sub-basins of the Baltic Sea, indicating differences in the input of organic matter and nutrients to each sub-basin.peerReviewe

    Nucleon-induced reactions at intermediate energies: New data at 96 MeV and theoretical status

    Full text link
    Double-differential cross sections for light charged particle production (up to A=4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed using two independent devices, SCANDAL and MEDLEY. The data were recorded with low energy thresholds and for a wide angular range (20-160 degrees). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature.Comment: 21 pages, 28 figure

    Polychaete invader enhances resource utilization in a species-poor system

    Get PDF
    Ecosystem consequences of biodiversity change are often studied from a species loss perspective, while the effects of invasive species on ecosystem functions are rarely quantified. In this experimental study, we used isotope tracers to measure the incorporation and burial of carbon and nitrogen from a simulated spring phytoplankton bloom by communities of one to four species of deposit-feeding macrofauna found in the species-poor Baltic Sea. The recently invading polychaete Marenzelleriaarctia, which has spread throughout the Baltic Sea, grows more rapidly than the native species Monoporeia affinis, Pontoporeia femorata (both amphipods) and Macoma balthica (a bivalve), resulting in higher biomass increase (biomass production) in treatments including the polychaete. Marenzelleria incorporated and buried bloom material at rates similar to the native species. Multi-species treatments generally had higher isotope incorporation, indicative of utilization of bloom material, than expected from monoculture yields of the respective species. The mechanism behind this observed over-yielding was mainly niche complementarity in utilization of the bloom input, and was more evident in communities including the invader. In contrast, multi-species treatments had generally lower biomass increase than expected. This contrasting pattern suggests that there is little overlap in resource use of freshly deposited bloom material between Marenzelleria and the native species but it is likely that interference competition acts to dampen resulting community biomass. In conclusion, an invasive species can enhance incorporation and burial of organic matter from settled phytoplankton blooms, two processes fundamental for marine productivity

    Provision of aquatic ecosystem services as a consequence of societal changes: The case of the Baltic Sea

    Get PDF
    Aquatic ecosystem services are important for human wellbeing, but they are much less studied than terrestrial ecosystem services. The objectives of this study are to broaden, itemize and exemplify the human-nature interactions in modeling the future provision of aquatic ecosystem services. We include shared socioeconomic and representative concentration pathways, used extensively in climate research, as drivers of change for the future development of the Baltic Sea. Then we use biogeochemical and ecosystem models to demonstrate the future development of exemplary supporting, provisioning and cultural ecosystem services for two distinct combinations of regionally downscaled global climate and socioeconomic futures. According to the model simulations, the two global futures ("Sustainable well-being" vs. "Fossil-fuelled development") studied lead to clearly deviating trajectories in the provision of marine ecosystem services. Under the "Sustainable well-being"-scenario primary production decreases by 20%, catches of demersal fish increases and the recreation opportunities increase significantly by the end of the ongoing century. Under the "fossil-fuelled development"-scenario primary production doubles, fisheries focus on less valued pelagic fish and the recreation possibilities will decrease. Long-term projections of aquatic ecosystem services prepared for alternative global socioeconomic futures can be used by policy makers and managers to adaptively and iteratively adjust mitigation and adaptation effort with plausible future changes in the drivers of water pollution.Peer reviewe

    Best practices in the use of learning outcomes in chemistry education

    Get PDF
    Learning outcomes driven chemistry education is increasingly practiced, providing new opportunities for international comparisons. The interest in intended learning outcomes and constructive alignment has grown in many parts of the world due to both research in higher education (Biggs & Tang, 2011) and political decisions (e. g. the Bologna process in Europe). We will describe our steps towards a method for benchmarking (i.e. learning by sharing and comparing best practice) these outcomes, to enhance learner-centered chemistry education both in the developed and developing world. The project builds on and extends task group members’ experiences from national and international projects and draws on the international framework and multicultural competence of IUPAC’s Committee on Chemistry Education. Guiding chemistry education for the future requires the exchange of perspectives on core knowledge, skills and competencies. This project evaluates how learning outcomes for courses and modules are linked to each other and to learning outcomes for educational programs and how the expected learning outcomes can be aligned with learning activities and assessment. The comparison informs guidelines for self-evaluation, which focus on local learning outcomes for chemistry education including courses/modules, compared with national and/or international descriptors and with attention to alignment with learning activities and assessment. A full electronic report and manual for the benchmarking procedure will be produced at the conclusion of the project, including a collection of examples of good/best practice for dissemination. REFERENCES Biggs, J. B. & Tang, C. S. (2011). Teaching for quality learning at university: what the student does. Buckingham: Open University Press/Mc Graw-Hill Education

    Directional genetic selection by pulp mill effluent on multiple natural populations of three-spined stickleback (Gasterosteus aculeatus)

    Get PDF
    Contamination can cause a rapid environmental change which may require populations to respond with evolutionary changes. To evaluate the effects of pulp mill effluents on population genetics, we sampled three-spined sticklebacks (Gasterosteus aculeatus) near four pulp mills and four adjacent reference sites and analyzed Amplified Fragment Length Polymorphism (AFLP) to compare genetic variability. A fine scale genetic structure was detected and samples from polluted sites separated from reference sites in multidimensional scaling plots (P < 0.005, 1000 permutations) and locus-by-locus Analysis of Molecular Variance (AMOVA) further confirmed that habitats are significantly separated (FST = 0.021, P < 0.01, 1023 permutations). The amount of genetic variation between populations did not differ between habitats, and populations from both habitats had similar levels of heterozygosity (polluted sites Nei’s Hs = 0.11, reference sites Nei’s Hs = 0.11). Still, pairwise FST: s between three, out of four, pairs of polluted-reference sites were significant. A FST-outlier analysis showed that 21 (8.4%) loci were statistically different from a neutral distribution at the P < 0.05 level and therefore indicated to be under divergent selection. When removing 13 FST-outlier loci, significant at the P < 0.01 level, differentiation between habitats disappeared in a multidimensional scaling plot. In conclusion, pulp mill effluence has acted as a selective agent on natural populations of G. aculeatus, causing a convergence in genotype composition change at multiple sites in an open environment

    Could Seals Prevent Cod Recovery in the Baltic Sea?

    Get PDF
    Fish populations are increasingly affected by multiple human and natural impacts including exploitation, eutrophication, habitat alteration and climate change. As a result many collapsed populations may have to recover in ecosystems whose structure and functioning differ from those in which they were formerly productive and supported sustainable fisheries. Here we investigate how a cod (Gadus morhua) population in the Baltic Sea whose biomass was reduced due to a combination of high exploitation and deteriorating environmental conditions might recover and develop in the 21st century in an ecosystem that likely will change due to both the already started recovery of a cod predator, the grey seal Halichoerus grypus, and projected climate impacts. Simulation modelling, assuming increased seal predation, fishing levels consistent with management plan targets and stable salinity, shows that the cod population could reach high levels well above the long-term average. Scenarios with similar seal and fishing levels but with 15% lower salinity suggest that the Baltic will still be able to support a cod population which can sustain a fishery, but biomass and yields will be lower. At present knowledge of cod and seal interactions, seal predation was found to have much lower impact on cod recovery, compared to the effects of exploitation and salinity. These results suggest that dual management objectives (recovery of both seal and cod populations) are realistic but success in achieving these goals will also depend on how climate change affects cod recruitment

    EurA1c: the European HbA1c Trial to Investigate the Performance of HbA1c Assays in 2166 Laboratories across 17 Countries and 24 Manufacturers by Use of the IFCC Model for Quality Targets

    Get PDF
    Background: A major objective of the IFCC Committee on Education and Use of Biomarkers in Diabetes is to generate awareness and improvement of HbA1c assays through evaluation of the performance by countries and manufacturers. Methods: Fresh whole blood and lyophilized hemolysate specimens manufactured from the same pool were used by 17 external quality assessment organizers to evaluate analytical performance of 2166 laboratories. Results were evaluated per country, per manufacturer, and per manufacturer and country combined according to criteria of the IFCC model for quality targets. Results: At the country level with fresh whole blood specimens, 6 countries met the IFCC criterion, 2 did not, and 2 were borderline. With lyophilized hemolysates, 5 countries met the criterion, 2 did not, and 3 were borderline. At the manufacturer level using fresh whole blood specimens, 13 manufacturers met the criterion, 8 did not, and 3 were borderline. Using lyophilized hemolysates, 7 manufacturers met the criterion, 6 did not, and 3 were borderline. In both country and manufacturer groups, the major contribution to total error derived from between-laboratory variation. There were no substantial differences in performance between groups using fresh whole blood or lyophilized hemolysate samples. Conclusions: The state of the art is that 1 of 20 laboratories does not meet the IFCC criterion, but there are substantial differences between country and between manufacturer groups. Efforts to further improve quality should focus on reducing between-laboratory variation. With some limitations, fresh whole blood and well-defined lyophilized specimens are suitable for purpose

    Climate change in the Baltic Sea region : a summary

    Get PDF
    Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins.Peer reviewe
    corecore