22 research outputs found

    Malignant mesothelioma

    Get PDF
    Malignant mesothelioma is a fatal asbestos-associated malignancy originating from the lining cells (mesothelium) of the pleural and peritoneal cavities, as well as the pericardium and the tunica vaginalis. The exact prevalence is unknown but it is estimated that mesotheliomas represent less than 1% of all cancers. Its incidence is increasing, with an expected peak in the next 10–20 years. Pleural malignant mesothelioma is the most common form of mesothelioma. Typical presenting features are those of chest pain and dyspnoea. Breathlessness due to a pleural effusion without chest pain is reported in about 30% of patients. A chest wall mass, weight loss, sweating, abdominal pain and ascites (due to peritoneal involvement) are less common presentations. Mesothelioma is directly attributable to occupational asbestos exposure with a history of exposure in over 90% of cases. There is also evidence that mesothelioma may result from both para-occupational exposure and non-occupational "environmental" exposure. Idiopathic or spontaneous mesothelioma can also occur in the absence of any exposure to asbestos, with a spontaneous rate in humans of around one per million. A combination of accurate exposure history, along with examination radiology and pathology are essential to make the diagnosis. Distinguishing malignant from benign pleural disease can be challenging. The most helpful CT findings suggesting malignant pleural disease are 1) a circumferential pleural rind, 2) nodular pleural thickening, 3) pleural thickening of > 1 cm and 4) mediastinal pleural involvement. Involvement of a multidisciplinary team is recommended to ensure prompt and appropriate management, using a framework of radiotherapy, chemotherapy, surgery and symptom palliation with end of life care. Compensation issues must also be considered. Life expectancy in malignant mesothelioma is poor, with a median survival of about one year following diagnosis

    Brucellosis as an Emerging Threat in Developing Economies:Lessons from Nigeria

    Get PDF
    Nigeria is the most populous country in Africa, has a large proportion of the world's poor livestock keepers, and is a hotspot for neglected zoonoses. A review of the 127 accessible publications on brucellosis in Nigeria reveals only scant and fragmented evidence on its spatial and temporal distribution in different epidemiological contexts. The few bacteriological studies conducted demonstrate the existence of Brucella abortus in cattle and sheep, but evidence for B. melitensis in small ruminants is dated and unclear. The bulk of the evidence consists of seroprevalence studies, but test standardization and validation are not always adequately described, and misinterpretations exist with regard to sensitivity and/or specificity and ability to identify the infecting Brucella species. Despite this, early studies suggest that although brucellosis was endemic in extensive nomadic systems, seroprevalence was low, and brucellosis was not perceived as a real burden; recent studies, however, may reflect a changing trend. Concerning human brucellosis, no studies have identified the Brucella species and most reports provide only serological evidence of contact with Brucella in the classical risk groups; some suggest brucellosis misdiagnoses as malaria or other febrile conditions. The investigation of a severe outbreak that occurred in the late 1970s describes the emergence of animal and human disease caused by the settling of previously nomadic populations during the Sahelian drought. There appears to be an increasing risk of re-emergence of brucellosis in sub-Saharan Africa, as a result of the co-existence of pastoralist movements and the increase of intensive management resulting from growing urbanization and food demand. Highly contagious zoonoses like brucellosis pose a threat with far-reaching social and political consequences

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reliability Characterization Of Au-In Transient Liquid Phase Bonding Through Electrical Resistivity Measurement

    No full text
    Transient liquid phase (TLP) die-attach bonding is an attractive technique for high-temperature semiconductor device packaging. In this paper, the material reliability of gold-indium (Au-In) TLP bonding is investigated utilizing electrical resistivity measurement as an indicator of material diffusion. Samples were fabricated featuring a TLP reaction, representative of TLP die-attach, by depositing TLP materials on glass substrates with various Au-In compositions, but with identical barrier layers, and were then used for reliability investigation. The samples were annealed at 200 °C and then stressed with thermal cycling. Samples containing high indium content in the TLP bond are shown to have poor reliability due to material diffusion through barrier layers, whereas the samples containing sufficient gold content proved reliable through electrical resistivity measurement, energy-dispersive X-ray spectroscopy, focused ion beam, and scanning electron microscope characterization

    Game Equivalence and Bisimulation for Game Description Language

    No full text
    International audienceThis paper investigates the equivalence between games represented by state transition models and its applications. We first define a notion of bisimulation equivalence between state transition models and prove that it can be logically characterized by Game Description Language (GDL). Then we introduce a concept of quotient state transition model. As the minimum equivalent of the original model, it allows us to improve the efficiency of model checking for GDL. Finally, we demonstrate with real games that bisimulation equivalence can be generalized to characterize more general game equivalence

    Modeling the risk of spread and establishment for Asian longhorned beetle ( Anoplophora glabripennis

    No full text
    Land managers responsible for invasive species removal in the USA require tools to prevent the Asian longhorned beetle (Anoplophora glabripennis) (ALB) from decimating the maple-dominant hardwood forests of Massachusetts and New England. Species distribution models (SDMs) and spread models have been applied individually to predict the invasion distribution and rate of spread, but the combination of both models can increase the accuracy of predictions of species spread over time when habitat suitability is heterogeneous across landscapes. First, a SDM was fit to 2008 ALB presence-only locations. Then, a stratified spread model was generated to measure the probability of spread due to natural and human causes. Finally, the SDM and spread models were combined to evaluate the risk of ALB spread in Central Massachusetts in 2008–2009. The SDM predicted many urban locations in Central Massachusetts as having suitable environments for species establishment. The combined model shows the greatest risk of spread and establishment in suitable locations immediately surrounding the epicentre of the ALB outbreak in Northern Worcester with lower risk areas in suitable locations only accessible through long-range dispersal from access to human transportation networks. The risk map achieved an accuracy of 67% using 2009 ALB locations for model validation. This model framework can effectively provide risk managers with valuable information concerning the timing and spatial extent of spread/establishment risk of ALB and potential strategies needed for effective future risk management efforts

    Combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits

    Get PDF
    Background Rumen microbes break down complex dietary carbohydrates into energy sources for the host and are increasingly shown to be a key aspect of animal performance. Host genotypes can be combined with microbial DNA sequencing to predict performance traits or traits related to environmental impact, such as enteric methane emissions. Metagenome profiles were generated from 3139 rumen samples, collected from 1200 dual purpose ewes, using restriction enzyme-reduced representation sequencing (RE-RRS). Phenotypes were available for methane (CH4) and carbon dioxide (CO2) emissions, the ratio of CH4 to CH4 plus CO2 (CH4Ratio), feed efficiency (residual feed intake: RFI), liveweight at the time of methane collection (LW), liveweight at 8 months (LW8), fleece weight at 12 months (FW12) and parasite resistance measured by faecal egg count (FEC1). We estimated the proportion of phenotypic variance explained by host genetics and the rumen microbiome, as well as prediction accuracies for each of these traits. Results Incorporating metagenome profiles increased the variance explained and prediction accuracy compared to fitting only genomics for all traits except for CO2 emissions when animals were on a grass diet. Combining the metagenome profile with host genotype from lambs explained more than 70% of the variation in methane emissions and residual feed intake. Predictions were generally more accurate when incorporating metagenome profiles compared to genetics alone, even when considering profiles collected at different ages (lamb vs adult), or on different feeds (grass vs lucerne pellet). A reference-free approach to metagenome profiling performed better than metagenome profiles that were restricted to capturing genera from a reference database. We hypothesise that our referencefree approach is likely to outperform other reference-based approaches such as 16S rRNA gene sequencing for use in prediction of individual animal performance. Conclusions This paper shows the potential of using RE-RRS as a low-cost, high-throughput approach for generating metagenome profiles on thousands of animals for improved prediction of economically and environmentally important traits. A reference-free approach using a microbial relationship matrix from log10 proportions of each tag normalized within cohort (i.e., the group of animals sampled at the same time) is recommended for future predictions using RE-RRS metagenome profiles

    Expression of the p53 Tumor Suppressor Gene Is Up-Regulated by Depletion of Intracellular Zinc in HepG2 Cells

    No full text
    Expression and activation of the p53 tumor suppressor protein are modulated by various cellular stimuli. The objective of this work was to examine the influence of zinc depletion on the expression of p53 in HepG2 cells. Two different low Zn (ZD) media, Zn-free Opti-MEM and a ZD medium containing Chelex-100 treated serum, were used to deplete cellular zinc over one passage. Cellular zinc levels of ZD cells were significantly lower than in their controls in both the Opti-MEM and Chelex studies. p53 mRNA abundance was 187% higher in ZD Opti-MEM cells and Ͼ100% higher in ZD Chelex cells compared with their respective controls. To examine whether the effects were specific to zinc depletion, a third, zinc-replenished group (ZDA) was included in the Opti-MEM study in which cells were cultured in ZD media for nearly one passage before a change was made to zinc-adequate (ZA) medium for the last 24 h. Zinc levels in the ZDA cells were significantly higher than in ZD cells, and p53 mRNA abundance was normalized to control levels. Nuclear p53 protein levels were Ͼ100% higher in the ZD Opti-MEM cells than in ZA cells. Interestingly, the ZDA Opti-MEM cells had significantly lower levels of nuclear p53 protein than both the ZA and ZD cells. These data suggest that expression of p53, a critical component in the maintenance of genomic stability, may be affected by reductions in cellular zinc. J. Nutr. 130: 1688 –1694, 2000
    corecore