2,016 research outputs found

    Multi-scale assembly of hydrogels formed by highly branched arabinoxylans from Plantago ovata seed mucilage studied by USANS/SANS and rheology

    Get PDF
    © 2018 Elsevier Ltd The structures of two hydrogels formed by purified brush-like polysaccharides from Plantago ovata seed mucilage have been characterised from the nanometre to micrometre scale by using a combination of SANS and USANS techniques. These two hydrogels have distinctly different melting and rheological properties, but the structure of their gel networks bears striking similarity as revealed by USANS/SANS experiments. Surprisingly, we find that the dramatic changes in the rheological properties induced by temperature or change in the solvent quality are accompanied by a small alteration of the network structure as inferred from scattering curves recorded above melting or in a chaotropic solvent (0.7 M KOD). These results suggest that, in contrast to most gel-forming polysaccharides for which gelation depends on a structural transition, the rheological properties of Plantago ovata mucilage gels are dependent on variations in intermolecular hydrogen bonding. By enzymatically cleaving off terminal arabinose residues from the side chains, we have demonstrated that composition of side-chains has a strong effect on intermolecular interactions, which, in turn, has a profound effect on rheological and structural properties of these unique polysaccharides

    Elucidation of density profile of self-assembled sitosterol plus oryzanol tubules with small-angle neutron scattering

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Small-angle neutron scattering (SANS) experiments have been performed on self-assembled tubules of sitosterol and oryzanol in triglyceride oils to investigate details of their structure. Alternative organic phases (deuterated and non-deuterated decane, limonene, castor oil and eugenol) were used to both vary the contrast with respect to the tubules and investigate the influence of solvent chemistry. The tubules were found to be composed of an inner and an outer shell containing the androsterol group of sitosterol or oryzanol and the ferulic acid moieties in the oryzanol molecule, respectively. While the inner shell has previously been detected in SAXS experiments, the outer shell was not discernible due to similar scattering length density with respect to the surrounding solvent for X-rays. By performing contrast variation SANS experiments, both for the solvent and structurant, a far more detailed description of the self-assembled system is obtainable. A model is introduced to fit the SANS data; we find that the dimensions of the inner shell agree quantitatively with the analysis performed in earlier SAXS data (radius of 39.4 ± 5.6 Å for core and inner shell together, wall thickness of 15.1 ± 5.5 Å). However, the newly revealed outer shell was found to be thinner than the inner shell (wall thickness 8.0 ± 6.5 Å). The changes in the scattering patterns may be explained in terms of the contrast between the structurant and the organic phase and does not require any subtle indirect effects caused by the presence of water, other than water promoting the formation of sitosterol monohydrate in emulsions with aqueous phases with high water activity

    Structural Insights into the Mechanism of Heat‐Set Gel Formation of Polyisocyanopeptide Polymers

    Get PDF
    One of the key factors influencing the mechanical properties of natural and synthetic extracellular matrices (ECM) is how large‐scale 3D gel‐like structures emerge from the molecular self‐assembly of individual polymers. Here, structural characterization using small‐angle neutron scattering (SANS) of ECM‐mimicking polyisocyanopeptide (PIC) hydrogels are reported as a function of background ions across the Hofmeister series. More specifically, the process of polymer assembly is examined by probing the structural features of the heat‐set gels and correlating them with their rheological and micro‐mechanical properties. The molecular parameters obtained from SANS clearly show changes in polymer conformation which map onto the temperature‐induced changes in rheological and micro‐mechanical behavior. The formation of larger structures are linked to the formation of cross‐links (or bundles), whilst the onset of their detection in the SANS is putatively linked to their concentration in the gel. These insights provide support for the ‘hot‐spot’ gelation mechanism of PIC heat‐set gels. Finally, it is found that formation of cross‐links and heat‐set gelling properties can be strongly influenced by ions in accordance with Hofmeister series. In practice, these results have significance since ions are inherently present in high concentration during cell culture studies; this may therefore influence the structure of synthetic ECM networks

    Gilbert Damping in Magnetic Multilayers

    Full text link
    We study the enhancement of the ferromagnetic relaxation rate in thin films due to the adjacent normal metal layers. Using linear response theory, we derive the dissipative torque produced by the s-d exchange interaction at the ferromagnet-normal metal interface. For a slow precession, the enhancement of Gilbert damping constant is proportional to the square of the s-d exchange constant times the zero-frequency limit of the frequency derivative of the local dynamic spin susceptibility of the normal metal at the interface. Electron-electron interactions increase the relaxation rate by the Stoner factor squared. We attribute the large anisotropic enhancements of the relaxation rate observed recently in multilayers containing palladium to this mechanism. For free electrons, the present theory compares favorably with recent spin-pumping result of Tserkovnyak et al. [Phys. Rev. Lett. \textbf{88},117601 (2002)].Comment: 1 figure, 5page

    Higher-order modulations in the skyrmion-lattice phase of Cu2_2OSeO3_3

    Full text link
    Using small angle neutron scattering, we have investigated higher-order peaks in the skyrmion-lattice phase of Cu2_2OSeO3_3, in which two different skyrmion lattices, SkX1 and SkX2, are known to form. For each skyrmion-lattice phase, we observed two sets of symmetrically inequivalent peaks at the higher-order-reflection positions with the indices (110)(110) and (200)(200). Under the condition where the SkX1 and SkX2 coexist, we confirmed the absence of the scattering at Q\mathbf{Q} positions combining reflections from the two phases, indicating a significantly weak double-scattering component. Detailed analysis of the peak profile, as well as the temperature and magnetic-field dependence of the peak intensity, also supports the intrinsic higher-order modulation rather than the parasitic double scattering. The two higher-order modulations show contrasting magnetic-field dependence; the former (110)(110) increases as the field is increased, whereas the latter (200)(200) decreases. This indicates that, in Cu2_2OSeO3_3, skyrmions are weakly distorted, and the distortion is field-dependent in a way that the dominant higher-order modulation switches from (110)(110) to (200)(200) under field. Monte Carlo simulations under sweeping external magnetic field qualitatively reproduce the observed magnetic-field dependence, and suggests that the higher-order modulations correspond to the superlattices of weak swirlings appearing in the middle of the original triangular-latticed skyrmions.Comment: 13 pages, 14 figure

    Investigation of the micro- and nano-scale architecture of cellulose hydrogels with plant cell wall polysaccharides: a combined USANS/SANS study

    Get PDF
    The structure of protiated, deuterated and composite cellulose hydrogels with plant cell wall (PCW) polysaccharides has been investigated by combined USANS/SANS experiments, complemented with spectroscopy and microscopy. The broad size range covered by the USANS/SANS experiments enabled the identification of cellulose architectural features in the cross-sectional and longitudinal directions. In the cross-sectional direction, cellulose ribbons are modelled as core-shell structures. Xyloglucan and mixed linkage glucans interfere with the cellulose crystallisation process, reducing the crystallinity and establishing cross-bridges between ribbons. However, only xyloglucan is able to establish strong interactions with the cellulose microfibrils, affecting the properties of the ribbons' core. Longitudinally, the ribbons are hypothesised to present a ca. 1.4-1.5 ÎŒm periodic twist with a crystallite length of ca. 140-180 nm for the individual microfibrils. These results highlight the potential of USANS/SANS techniques to investigate the multi-scale architecture of cellulose hydrogels as well as the interaction mechanism between cellulose and PCW polysaccharides

    Cellulose-pectin composite hydrogels: intermolecular interactions and material properties depend on order of assembly

    Get PDF
    Plant cell walls have a unique combination of strength and flexibility however, further investigations are required to understand how those properties arise from the assembly of the relevant biopolymers. Recent studies indicate that Ca2+-pectates can act as load-bearing components in cell walls. To investigate this proposed role of pectins, bioinspired wall models were synthesised based on bacterial cellulose containing pectin-calcium gels by varying the order of assembly of cellulose/pectin networks, pectin degree of methylesterification and calcium concentration. Hydrogels in which pectin-calcium assembly occurred prior to cellulose synthesis showed evidence for direct cellulose/pectin interactions from small angle scattering (SAXS and SANS), had the densest networks and the lowest normal stress. The strength of the pectin-calcium gel affected cellulose structure, crystallinity and material properties. The results highlight the importance of the order of assembly on the properties of cellulose composite networks and support the role of pectin in the mechanics of cell walls. (C) 2017 Elsevier Ltd. All rights reserved

    Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5- 38.0°S): Constraints on Mantle Wedge and Input Compositions

    Get PDF
    Crustal assimilation (e.g. Hildreth and Moorbath, 1988) and/or subduction erosion (e.g. Stern, 1991; Kay et al., 2005) are believed to control the geochemical variations along the northern portion of the Chilean Southern Volcanic Zone. In order to evaluate these hypotheses, we present a comprehensive geochemical data set (major and trace elements and O-Sr-Nd-Hf-Pb isotopes) from Holocene primarily olivine-bearing volcanic rocks across the arc between 34.5-38.0°S, including volcanic front centers from Tinguiririca to Callaqui, the rear arc centers of Infernillo Volcanic Field, Laguna del Maule and Copahue, and extending 300 km into the backarc. We also present an equivalent data set for Chile Trench sediments outboard of this profile. The volcanic arc (including volcanic front and rear arc) samples primarily range from basalt to andesite/trachyandesite, whereas the backarc rocks are low-silica alkali basalts and trachybasalts. All samples show some characteristic subduction zone trace element enrichments and depletions, but the backarc samples show the least. Backarc basalts have higher Ce/Pb, Nb/U, Nb/Zr, and Ta/Hf, and lower Ba/Nb and Ba/La, consistent with less of a slab-derived component in the backarc and, consequently, lower degrees of mantle melting. The mantle-like Ύ18O in olivine and plagioclase phenocrysts (volcanic arc = 4.9-5.6 and backarc = 5.0-5.4 per mil) and lack of correlation between Ύ18O and indices of differentiation and other isotope ratios, argue against significant crustal assimilation. Volcanic arc and backarc samples almost completely overlap in Sr and Nd isotopic composition. High precision (double-spike) Pb isotope ratios are tightly correlated, precluding significant assimilation of older sialic crust but indicating mixing between a South Atlantic Mid Ocean-Ridge Basalt (MORB) source and a slab component derived from subducted sediments and altered oceanic crust. Hf-Nd isotope ratios define separate linear arrays for the volcanic arc and backarc, neither of which trend toward subducting sediment, possibly reflecting a primarily asthenospheric mantle array for the volcanic arc and involvement of enriched Proterozoic lithospheric mantle in the backarc. We propose a quantitative mixing model between a mixed-source, slab-derived melt and a heterogeneous mantle beneath the volcanic arc. The model is consistent with local geodynamic parameters, assuming water-saturated conditions within the slab

    Promoting communication skills for information systems students in Australian and Portuguese higher education : action research study

    Get PDF
    This paper aims to examine the value of communication skills learn- ing process through various assessments in Information Systems (IS) postgrad- uate units in Australia and Portugal. Currently, communication skills are indispensable to students in expanding their social networks and their knowl- edge at university and in the future workplace, since businesses expect their employees to have strong communication and presentation skills. This paper provides empirical evidence based on the anonymous quantitative and qualita- tive data collected during 2 years from 126 postgraduate students, which were collected via formal and informal feedback. Various assessment methods were used in Information Systems units to promote and develop the communication skills; these assessments are: reflective journal, business plan and prototype, discussion forum, presentation, and final examination. A Communication skills model (CSM) was developed based on Action research principles to promote the assessments which will assist IS students to enhance their communication skills. The research outcomes indicated that integrating communication skills in the assessments will allow students to promote their communication skills and boost their self-esteem skills. Furthermore, this paper added a new theoretical and practical contribution to higher-education teaching and learning literature, especially the action research for teachers to promote and develop communica- tion skills among students. Finally, integrating these skills in the units should meet the objectives and aims of the units, Master’s degrees, universities, and businesses’ needs, and satisfy our student’s need
    • 

    corecore