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Abstract 18 

The structure of protiated, deuterated and composite cellulose hydrogels with plant cell 19 

wall (PCW) polysaccharides has been investigated by combined USANS/SANS 20 

experiments, complemented with spectroscopy and microscopy. The broad size range 21 

covered by the USANS/SANS experiments enabled the identification of cellulose 22 

architectural features in the cross-sectional and longitudinal directions. In the cross-23 

sectional direction, cellulose ribbons are modelled as core-shell structures. Xyloglucan and 24 

mixed linkage glucans interfere with the cellulose crystallization process, reducing the 25 

crystallinity and establishing cross-bridges between ribbons. However, only xyloglucan is 26 

able to establish strong interactions with the cellulose microfibrils, affecting the properties 27 

of the ribbons’ core. Longitudinally, the ribbons are hypothesised to present a ca. 1.4-1.5 28 

µm periodic twist with a crystallite length of ca. 140-180 nm for the individual 29 

microfibrils. These results highlight the potential of USANS/SANS techniques to 30 

investigate the multi-scale architecture of cellulose hydrogels as well as the interaction 31 

mechanism between cellulose and PCW polysaccharides.  32 

   33 

Keywords: small angle scattering; neutron scattering; deuteration; cellulose; hydrogels; 34 

Komagataeibacter xylinus 35 

  36 
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1. Introduction 37 

Cellulose hydrogels are highly hydrated systems in which cellulose fibrillar networks 38 

interact with interstitial water at different structural levels. Several bacterial species such 39 

as Komagataeibacter xylinus (formerly known as Gluconacetobacter xylinus), are able to 40 

synthesise cellulose hydrogels in the form of pellicles when inoculated into a culture 41 

medium rich in carbohydrates or polyols [1]. The synthesised cellulose hydrogels present 42 

a high degree of purity and hydration (ca. 99 wt.% H2O) and possess a complex structure 43 

in which cellulose is hierarchically assembled to form different structural features [2, 3]. 44 

Cellulose chains, consisting of glucose units connected by β-1-4-linkages, are typically 45 

arranged into larger structures known as cellulose microfibrils. These microfibrils contain 46 

distinct domains with differing levels of cellulose chain ordering: (i) crystalline (i.e. 47 

highly ordered chains), (ii) paracrystalline (i.e. regions with loose molecular packing or 48 

some degree of crystal distortion) and (iii) amorphous (i.e. regions with randomly 49 

arranged cellulose chains) domains. At the same time, the presence of hydroxyl groups on 50 

the surface of the microfibrils leads to the creation of cellulose-cellulose and cellulose-51 

water interactions by means of a strong hydrogen bonded network, resulting in the 52 

formation of structures which, in the particular case of bacterial cellulose, are known as 53 

cellulose ribbons. 54 

 55 

Cellulose hydrogels are attracting a great deal of interest across diverse research areas, 56 

since they  present remarkable properties for their application in the fields of biomedicine 57 

[4-6], the food industry [7] and polymeric bionanocomposites [8-11], as well as having 58 

been shown to serve as excellent model systems to investigate the structure and 59 

interaction mechanisms of cellulose with other components found in plant cell walls 60 

(PCWs) [12-18]. PCWs are complex systems in which cellulose microfibrils, the main 61 
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load-bearing component, are embedded in an amorphous matrix of polysaccharides and 62 

glycoproteins. The matrix composition and interconnection between the different 63 

components is specific to each type of PCW and determine the properties of the respective 64 

plant tissue. Xyloglucan (XG) and pectins are the major non-cellulosic polysaccharides 65 

found in the primary cell walls from dicotyledonous plants and non-commelinoid 66 

monocotyledonous plants, known as Type I walls. On the other hand, arabinoxylans (AX) 67 

and (1→3)(1→4)-β-D-glucans, i.e. mixed linkage glucans (MLG), constitute the 68 

predominant matrix polysaccharides in type II walls, which are found in commelinoid 69 

monocotyledons, including cereals and grasses [19]. Understanding the interaction 70 

mechanism of cellulose with these PCW polysaccharides would therefore provide 71 

substantial insights into their biosynthetic and structural roles, enabling connections to be 72 

established between the specific requirements of different PCW types and both their 73 

composition and structure.   74 

 75 

Investigation of the PCW structure is, however, extremely complicated due to several 76 

inherent difficulties. For example, the ability of plants to adapt to modifications in their 77 

cell wall composition [20] has precluded the drawing of definitive conclusions on the role 78 

of different PCW polysaccharides. Furthermore, it is unclear how the chemical or 79 

enzymatic processes that are typically applied to sequentially extract PCW components – 80 

essentially a deconstructionist approach - affect the cellulose network. As an alternative, 81 

the synthesis of composite cellulose hydrogels through the incorporation of PCW 82 

components into the bacterial culture medium constitutes a very promising approach, as it 83 

offers the possibility of studying the effect of selected PCW polysaccharides on the 84 

cellulose biosynthesis process and on the properties of the synthesised hydrogels, without 85 

the interference of additional components. The incorporation of several PCW 86 
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polysaccharides such as XG, mannans, AX, MLG and pectins using this approach is well 87 

reported in the literature [2, 12, 13, 15-18, 21-27]. From some of these studies it has been 88 

inferred that only XG and mannans are able to interfere with the cellulose crystallisation 89 

process, reducing the crystallinity index and promoting the formation of the cellulose Iβ 90 

allomorph [14, 15, 17, 18, 23, 26]. This indicates that a certain fraction of XG (or 91 

mannan) is able to interact directly with the individual cellulose microfibrils. In addition, 92 

a different fraction of XG, which interacts with the surface of cellulose ribbons, has been 93 

identified [14, 15, 17]. This fraction is thought to correspond to the thin XG cross-bridges 94 

detected in the microscopy images from composite hydrogels [14, 15, 17, 26]. In contrast 95 

to XG, neither AX nor MLG have been reported to affect the crystalline arrangement of 96 

cellulose and they have been suggested to interact with cellulose ribbons via a surface 97 

adsorption mechanism [15, 16, 23].  98 

 99 

It is evident that in the case of highly hydrated systems such as cellulose hydrogels, any 100 

drying process should be avoided as it may induce strong structural alterations. In this 101 

sense, small angle X-ray and neutron scattering techniques (SAXS and SANS) represent a 102 

clear advantage over the typically used microscopy characterisation techniques, since they 103 

enable the characterisation of native cellulose hydrogels, covering a size range from 1 nm 104 

to several hundreds of nm, with minimal sample preparation [28]. Moreover, in the 105 

particular case of SANS, the different scattering length of hydrogen and deuterium opens 106 

up the possibility of enhancing the scattering length density (SLD) contrast by means of 107 

selective deuterium labelling. Successful production of deuterated bacterial cellulose by 108 

utilising deuterated glycerol [29, 30] and glucose [3, 31] as the carbon sources has been 109 

recently reported. Moreover, the similarity in the multi-scale assembly (from the 110 

molecular to the nano-scale size range) of protiated and analogous deuterated cellulose 111 
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hydrogels has been demonstrated by the combination of SAXS and SANS with 112 

complementary microscopy, spectroscopy and diffraction methods [3]. In spite of the 113 

aforementioned, the great potential of these techniques can only be fully exploited if a 114 

suitable model, based on prior knowledge of the system, is utilised to interpret the data. It 115 

has been recently demonstrated that the conventional models which consider cellulose 116 

ribbons as one-phase objects surrounded by bulk solvent are not appropriate[2]. Instead, a 117 

core-shell model accounting for the different structural levels and cellulose-water 118 

interactions has been proven to satisfactorily describe the nano-architecture of native 119 

cellulose hydrogels  [2, 3]. However, the size range covered by small angle scattering 120 

techniques does not allow the identification of structural features relevant to the cellulose 121 

assembly in the ribbon longitudinal direction. Moreover, the values reported in the 122 

literature for the length of bacterial cellulose crystalline domains, ranging from 100 nm up 123 

to several micrometres [32-37], are merely based on microscopy characterisation of 124 

samples extracted by means of enzymatic or acid digestion. The large variability in the 125 

reported lengths is related to the heterogeneity of the applied acid hydrolysis procedures. 126 

It is known that several factors such as acid concentration, temperature and hydrolysis 127 

time may strongly affect the extent to which the amorphous and crystalline domains are 128 

digested [34, 36] and, therefore, varying any of these parameters is expected to affect the 129 

morphology of the extracted material. In this context, ultra-small angle scattering 130 

techniques, which are able to cover size ranges up to ca. 10 µm, represent an excellent 131 

approach to provide a complete picture of the cellulose multi-scale structure in native 132 

cellulose hydrogels when combined with small angle scattering techniques.   133 

 134 

In the present work, we report on the multi-scale characterisation of pure protiated and 135 

partially deuterated cellulose hydrogels, as well as associated composites of cellulose with 136 
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three different PCW polysaccharides through a combined USANS/SANS study, 137 

complemented by spectroscopy and microscopy techniques. By extending the size range 138 

up to the micron scale, structural features characteristic of the longitudinal structure of 139 

cellulose can be identified. Through the strategic combination of the multi-length scale 140 

techniques selected, the effect of PCW polysaccharides on the architecture of the 141 

synthesised hydrogels has been investigated and related to their structural roles.  142 

 143 

2. Materials and methods 144 

2.1 Production of pure cellulose and composite hydrogels  145 

Protiated and deuterated cellulose, as well as associated composite PCW hydrogels were 146 

prepared as described by Martínez-Sanz et al. [3], with the following exceptions. Briefly, 147 

Komagataeibacter xylinus (formerly Gluconacetobacter xylinus) strain ATCC 53524 148 

(American Type Culture Collection, Manassas, VA, USA) was cultivated in Hestrin 149 

Schramm (HS) medium [38] at pH 5.0, containing 2.0% (w/v) glucose or deuterated 150 

glucose (552003-1G – Sigma- Aldrich, Castle Hill, NSW, Australia) as the sole carbon 151 

sources to generate the protiated (H-CH) and the deuterated cellulose hydrogels (D-CH), as 152 

well as the composite hydrogels incorporating PCW polysaccharides (D-CH-AX, D-CH-153 

XG and D-CH-MLG). The latter materials were produced as described by Mikkelsen and 154 

co-workers [16, 39], by adding to this medium, as desired, 0.5% (w/v) medium viscosity 155 

(22 cSt) wheat AX (lot 40302b), medium viscosity (28 cSt) barley MLG (lot 90802), or 156 

tamarind seed XG (lot 100403), supplied by Megazyme International Ireland (County 157 

Wicklow, Ireland). Incubations were performed at 30 °C for 48 h under static conditions. 158 

The materials were subsequently harvested and washed for 90 min in ice-cold sterile 159 

milliQ water, under gentle agitation (150 rpm), with a total of five rinses (until white in 160 

appearance) to remove excess medium and polymers non-specifically trapped within the 161 
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cellulose mat, and to dislodge loosely-associated bacterial cells. Thereafter, all samples 162 

were stored in 0.02% (w/v) sodium azide solution at 4°C, until used for experiments. 163 

 164 

The wet weights of all samples were recorded using an analytical balance at room 165 

temperature and the densities were calculated by dividing the wet weights by the average 166 

volume of the hydrated hydrogel (calculated using the dimensions of the growth vessel and 167 

the thickness of the hydrated hydrogel, measured using digital calipers).  168 

 169 

2.2 Compositional Analysis 170 

2.2.1. Monosaccharide analysis 171 

The amount AX and XG incorporated into the D-CH-AX and D-CH-XG composite 172 

hydrogels was calculated from individual monosaccharide contents of the dry samples 173 

using the method by Pettolino et al. [40]. Briefly, the air-dried samples (1-5 mg) were cut 174 

with a scalpel, hydrolysed with sulphuric acid, reduced and acetylated. The alditol acetates 175 

of the monosaccharides were subsequently identified and quantified by gas 176 

chromatography-mass spectrometry (GC-MS).  177 

 178 

2.2.2 β−glucan colorimetric assay 179 

The amount of MLG in the D-CH-MLG composite hydrogel was assessed using the 180 

mixed-linkage β-D-glucan assay kit (Megazyme International Ireland Ltd, County 181 

Wicklow, Ireland), according to the manufacturer's protocol.   182 

 183 

2.3 Scanning electron microscopy (SEM) 184 

The microarchitectures of the fully hydrated H-CH, D-CH, as well as composite D-CH 185 

hydrogels were visualised by appropriately preparing samples of approximately 1cm2 for 186 
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field emission SEM (FESEM) as previously described by Martínez-Sanz et al. [3]. Images 187 

were obtained using a JSM 7100F electron microscope (JEOL, Tokyo, Japan) with an 188 

accelerating voltage of 5 kV and a working distance of 10 mm. Cross-sections of cellulose 189 

ribbons were determined using ImageJ software [41] from the FESEM micrographs at 190 

their original magnification. 191 

 192 

2.4 Small angle neutron scattering (SANS) 193 

SANS measurements were performed on the 40 m QUOKKA instrument at the OPAL 194 

reactor [42]. Four configurations were used to cover a q range of ca. 0.0006-0.6 Å−1 195 

where q is the magnitude of the scattering vector defined as � = ��
� sin 	, λ is the 196 

wavelength in Å and 2θ is the scattering angle. These configurations were: (i) source-to-197 

sample distance (SSD) = 20.2 m with focusing optics using MgF2 lenses; (ii) SSD = 198 

20.2 m, sample-to-detector distance (SDD) = 20.1 m; (iii) SSD = 3.9 m, SSD = 4.0 m and 199 

(iv) SSD = 10.0 m, SDD = 1.3 m, with 10% wavelength resolution and λ = 8.1 Å for (i) 200 

and  λ = 5.0 Å for (ii)-(iv). The source and sample aperture diameters were 50 mm and 201 

12.5 mm, respectively. Native H-CH, D-CH and composite D-CH hydrogels were studied 202 

by placing the samples in 1 mm path length cells with demountable quartz windows and 203 

filling the cells with D2O. To maximize D/H exchange, prior to the SANS measurements, 204 

the hydrogels were soaked in D2O with an approximate sample/solvent ratio of 1g/30mL. 205 

The hydrogels were initially soaked for 24h and, subsequently, an additional exchange 206 

step with fresh solvent was carried out for at least a further 24h. The demountable cells 207 

used for these SANS experiments have been designed for USANS and enable beam 208 

dimensions of up to 5 x 5 cm2. 209 

 210 
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SANS data were reduced using NCNR SANS reduction macros [43] modified for the 211 

QUOKKA instrument, using the Igor software package (Wavemetrics, Lake Oswego, 212 

OR) with data corrected for empty cell scattering, transmission, and detector response and 213 

transformed onto an absolute scale by the use of an attenuated direct beam transmission 214 

measurement.  215 

 216 

2.5 Ultra-Small angle neutron scattering (USANS) 217 

USANS experiments were performed on identical samples to SANS, using the 218 

KOOKABURRA instrument at the OPAL reactor [44]. KOOKABURRA is based on the 219 

Bonse–Hart technique using two sets of identical, 5-bounce, channel-cut, perfect Si single 220 

crystals, the “monochromator” and “analyser” respectively, arranged in non-dispersive 221 

parallel geometry in Bragg reflection. Using a neutron wavelength of 4.74 Å and a Cd 222 

aperture with a diameter of 35 mm, a q-range of ca. 0.00003–0.007 Å–1 was accessed. 223 

Rocking curve profiles were measured by rotating the analyser crystal away from the 224 

aligned peak position (the position in which the undeviated neutrons are reflected onto the 225 

detector) and measuring the neutron intensity as a function of q. The USANS data were 226 

reduced with an empty cell as background and converted onto an absolute scale using 227 

adapted python scripts based on the NCNR USANS reduction macros[43]. The reduced 228 

slit-smeared data were desmeared using the Lake algorithm [43] before merging with the 229 

SANS data. 230 

 231 

2.6 Data fitting 232 

The reduced SANS and USANS data were merged, obtaining intensity versus q plots with 233 

a q range of ca. 3 x 10-5 – 0.6 Å–1. As an example, Figure 1 shows the q ranges covered by 234 

the four different SANS configurations (three conventional and one focussing) as well as 235 
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by the USANS experiment. The background contribution for each sample was estimated 236 

by calculating the slope of the linear region at high q on an I·q4 versus q4 plot (Porod plot). 237 

The value of the slope obtained was used to determine the level of constant background 238 

(bulk D2O and incoherent scattering from the protonated material) which was subsequently 239 

subtracted from each sample. All the scattering plots presented in this work have been 240 

background subtracted by following this procedure. 241 

 242 

The function utilised to fit the experimental data over the extremely broad q range 243 

available comprises the sum of a three-level Beaucage model (to account for the structural 244 

features contained within the region 3 x 10-5 < q / Å-1 < 6 x 10-3) plus a core-shell cylinder 245 

model (to describe the shoulder features within the region 0.01 < q / Å-1 < 0.10). The 246 

resulting sum function is as follows: 247 


��� =
�
��
�
���
���

���
exp �−�� ∙ ��,��3 ! +

#� $erf '���,�√6 *+�,-
�,-

./
//
0
 

+1 23
456788 ∙ ∑ :��;<=> , ?;<=>� ∙@56788 A��, �;<=>, �2B>CC , D, EDF;<=> , EDF2B>CC, EDF2<CG�H +248 

IJK           (1) 249 

where the first term contained within brackets corresponds to the three-level Beaucage 250 

model, the second term corresponds to the core-shell cylinder model and the third term 251 

accounts for the incoherent background remaining after solvent background subtraction 252 

(which in this case was close to zero, as it had already been subtracted using the Porod plot 253 

described above). 254 

 255 

The Beaucage model considers that, for each individual level, the scattering intensity is the 256 

sum of a Guinier term and a power-law function [45, 46]. In the first term from equation 257 
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(1) �� =	M�N�∆EDF��	is the exponential prefactor (where N� is the volume of the particle 258 

and ∆EDF� 	 is the SLD contrast existing between the ith structural feature and the 259 

surrounding solvent), ��,� is the radius of gyration describing the average size of the ith 260 

level structural feature and #� is a q-independent prefactor specific to the type of power-261 

law scattering with power-law exponent, A�. In this particular case, the largest sized 262 

structural level (i.e. level 1) could be described by a simple power-law function (with the 263 

first term in the Beaucage model equation equal to zero).  264 

 265 

The core-shell cylinder model, corresponding to the second term in equation (1), is a 266 

slightly modified version of the core-shell model described in a previous work [2], which 267 

accounts for a cylinder structure with polydisperse core and fixed thickness shell (no 268 

power-law term was included in this case, as this is already being accounted for by the 269 

Beaucage model). A detailed description of the form factor function and the parameters 270 

defining the core-shell model can be found elsewhere [2]. In this particular case, the scale 271 

factor was allowed to vary between 0.002 and 0.05 during the fitting process. This range 272 

was based on uncertainties concerning the sample thickness (0.8-1.0 mm), knowledge of 273 

the dry weight (0.5-2.0%) and errors in the measurements thereof. The SLD values of the 274 

native hydrogels (i.e. in 100% H2O) were estimated by assuming an initial molecular 275 

structure of C6H10O5 for H-CH and C6H5D5O5 for D-CH. As described below, the 276 

deuteration degree for D-CH is based on the FT-IR analysis and is consistent with the 277 

value previously reported for a D-CH sample prepared by following exactly the same 278 

procedure [3]. The cellulose crystallinity values, calculated from the 13C-NMR 279 

experiments, were also considered in the calculations by re-calculating the physical density 280 

of cellulose as: 281 

Q;>CCRC<2> = STU ∙ Q;=V2WXCC�Y>	;>CCRC<2>Z + S�1 − TU� ∙ QX\<=]B<R2	;>CCRC<2>Z). 282 
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 283 

2.7 13 C CP/MAS Nuclear Magnetic Resonance (NMR) spectroscopy 284 

The solid-state 13C CP/MAS NMR experiments were performed at a 13C frequency of 285 

75.46 MHz on a Bruker MSL-300 spectrometer. One hydrogel specimen, squeeze dried to 286 

~90% water, was packed in a 4-mm diameter, cylindrical, PSZ (partially-stabilized 287 

zirconium oxide) rotor with a perfluorinated polymer (KelF) end cap. Due to the limited 288 

amount of sample, it was necessary to pack the rotor with Teflon tape so the material was 289 

placed in the middle of the rotor to maximize signal intensity. The rotor was spun at 5-6 290 

kHz at the magic angle (54.7o). The 90o pulse width was 5 µs and a contact time of 1 ms 291 

was used for all samples with a recycle delay of 3 s. The spectral width was 38 kHz, 292 

acquisition time 50 ms, time domain points 2000, transform size 4000 and line broadening 293 

50 Hz. At least 20,000 scans were accumulated for each spectrum. Spectra were referenced 294 

to external adamantane.  295 

 296 

2.8 FT-IR analysis 297 

IR spectra of fully hydrated H-CH and D-CH samples were collected on a Perkin Elmer 298 

Spectrum 100 FT-IR spectrometer (Perkin Elmer Instruments, Waltham, Massachusetts, 299 

USA) using an ATR accessory with a single bounce diamond crystal. Spectra were 300 

recorded between 4000 and 600 cm-1 at a resolution of 4 cm-1 and 32 scans were added. A 301 

single-beam spectrum of the clean crystal was used as a background. After converting the 302 

spectra into absorbance units, the baselines were corrected using a straight line between 303 

4000 and 600 cm-1. Duplicate spectra were recorded and averaged for further analysis. All 304 

spectra were deconvoluted with a Lorentzian line shape, a half-width of 15 cm-1 and a 305 

resolution enhancement factor of 1.5 using Bessel apodization.  306 

 307 
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 308 

Figure 1. Merging of the experimental data for D-CH soaked in D2O.  The data 309 

corresponding to the four different SANS configurations and the USANS experiment are 310 

shown with different colours. 311 

 312 

Table 1. Neutron and X-ray scattering length densities for protiated and deuterated 313 

bacterial cellulose. The following physical densities were used: ρ(crystalline cellulose) = 314 

1.60 g/cm3 [47], ρ(paracrystalline cellulose) =  1.51 g/cm3 [48] and ρ(amorphous cellulose) 315 

=  1.48 g/cm3 [49]. Bound H2O and D2O scattering length density values were calculated 316 

assuming a density increase of 25% with respect to the bulk solvent density, as reported in 317 

[47, 50]. 318 

 
Neutron SLD  

(1010 cm-2) 

X-ray SLD  

(1010 cm-2) 

Cellulose (crystalline) 1.87 14.46 

Cellulose (paracrystalline) 1.77 13.65 
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Cellulose (amorphous) 1.73 13.38 

Cellulose (crystalline, D2O exchanged) 3.66 --- 

Cellulose (amorphous, D2O exchanged) 3.39 --- 

100% Deuterated cellulose (crystalline) 7.59 13.62 

100% Deuterated cellulose (amorphous) 
7.02 12.60 

Hemicelluloses (*) ~ 1.62 ~ 12.65 

Bulk H2O -0.56 9.47 

Bound H2O -0.70 11.84 

D2O 6.38 9.37 

Bound D2O 7.97 11.79 

(*) The provided SLD value is based on the estimation previously conducted for tamarind 319 

XG and wheat AX [34]. However, this value should only be used as an approximation as it 320 

will differ depending on the molecular weight and degree of substitution of each particular 321 

hemicellulose. 322 

 323 

3. Results and discussion 324 

3.1 Construction and molecular analysis of cellulose hydrogels and its composites 325 

with PCW polysaccharides 326 

After 48 h fermentation, the pure H-CH and D-CH, as well as the D-CH composite 327 

hydrogels form thick gelatinous pellicles at the liquid medium-air interface. The thickness 328 

of the synthesised hydrogels, as well as their wet weights and densities, are presented in 329 

Table 2.  The differences in the estimated bulk densities may be indicative of D-CH being 330 

less dense than H-CH, suggesting that cellulose synthesis takes place at a slower rate when 331 

d-glucose is provided as the carbon source, as observed previously [3]. 332 

 333 
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Table 2.  Post ferementation characteristics of the pure and composite hydrogels.  334 

 

Hydrogel 

Thickness 

(mm) 

Wet 

Weight (g) 

Estimated  

Density  

(g/cm3) 

Polymer 

incorporation 

(%) 

H-CH 1.11 2.46 1.64 --- 

D-CH 1.03 1.89 1.36 --- 

D-CH-AX 0.76 1.75 1.71 13 

D-CH-XG 0.78 1.60 1.51 39 

D-CH-MLG 1.05 2.94 2.07 32 

 335 

Monosaccharide analysis of H-CH and D-CH reveals high purity, with >97% glucose 336 

composition. When D-CH is produced in the presence of wheat endosperm AX, the level 337 

of PCW polysaccharide incorporation is 13% AX. This is relatively low when compared to 338 

the incorporation levels observed for H-CH-AX hydrogels, where the AX was dissolved by 339 

vigorous overnight stirring in boiling water (ca. 50% AX) [14-16]. When barley 340 

endosperm MLG is added to the fermentation medium, 32% MLG is incorporated into the 341 

D-CH hydrogel, similar to previously reported values of 27-29% MLG incorporation for 342 

H-CH-MLG [16, 53]. For the D-CH-XG hydrogel, incorporation of 39% XG is consistent 343 

with previously reported values of ca. 27-38% XG for H-CH-XG samples [14-17]. 344 

 345 

3.2 Microstructure characterisation  346 

The microstructures of the pure cellulose and composite hydrogels were visualised by 347 

FESEM, and representative micrographs are presented in Figure 2. The soluble-extensive 348 

fixing and critical-point drying sample preparation appeared to prevent microstructural 349 

collapse of the highly hydrated samples during the drying process. FESEM revealed that 350 
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all the samples present the typical architecture of randomly oriented cellulose ribbons, 351 

which has been previously reported for cellulose hydrogels [3, 14-16, 22]. As the samples 352 

were only washed with water prior to the microscopy characterisation (to avoid any 353 

possible structural modifications caused by a more extensive washing with sodium 354 

hydroxide [54]), it was not possible to remove completely the bacteria cells, which are 355 

visible in the micrographs as cylindrical objects attached to the cellulose ribbons. The 356 

average ribbon cross-section values estimated from the FESEM micrographs are 27.7 ± 357 

10.1 nm, 42.3 ± 14.4 nm, 33.7 ± 12.6 nm, 26.0 ± 10.4 nm and 34.0 ± 12.4 nm for H-CH, 358 

D-CH, D-CH-AX, D-CH-XG and D-CH-MLG, respectively. These values are similar to 359 

those observed for several bacterial cellulose samples [15, 24, 25, 35, 55, 56]. Given the 360 

large standard deviation values, the differences in the ribbon thickness are not significant.  361 

 362 

As visualised in Figures 2D and 2E, it appears that XG and MLG act as cross-linking 363 

agents, promoting the association of ribbons. Thin strands of XG, acting as cross-bridges 364 

between cellulose ribbons, have previously been detected in H-CH-XG samples [14, 15]. 365 

In contrast with the marked molecular binding exhibited within D-CH-XG, D-CH-AX 366 

(Figure 2C) does not exhibit such features. In this latter composite hydrogel, small 367 

“nodules” (of ca. 78 ± 13 nm size) are visible (circled in Figure 2 and Figure S1). These 368 

are likely due to in situ precipitation by methanol during the solvent-rich sample 369 

preparation protocol, as previously reported [16]. Yet interestingly, in the D-CH-MLG 370 

micrographs (Figure 2E), a combination of a few nodular-like structures with an average 371 

size of ca. 57 ± 20 nm, consistent with earlier findings [16], as well as cross-linked 372 

cellulose ribbons are observed in the heterogeneous sample. The microarchitectural 373 

obervations made for D-CH-MLG in this study suggest that deuteration may promote non-374 

covalent cross bridges to form between cellulose ribbons by MLG in the D-CH hydrogel.  375 
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 376 

 377  378 

 379  380 

 381 

Figure 2. FESEM micrographs of freeze-subtituted H-CH (A), D-CH (B), D-CH-AX (C),  382 

D-CH-XG (D), and D-CH-MLG (E). Circles highlight some of the nodular structures 383 

detected in D-CH-AX and D-CH-MLG. 384 

 385 
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3.2 Molecular structure: 13C CP/MAS NMR and FT-IR 386 

The rigid components of the cellulose hydrogels were examined using solid-state 13C 387 

CP/MAS NMR and the spectra obtained are displayed in Figure 3. The cellulose 388 

crystallinity index was estimated by integration of the signals at 85-92 ppm and at 80-85 389 

ppm, corresponding to the internal crystalline and non-crystalline and/or crystal surface 390 

cellulose C4 sites respectively [57]. On the other hand, it was not possible to estimate the 391 

crystalline allomorph Iα/Iβ ratio since, as previously noted [3], the peaks are complicated 392 

by the quadrupolar coupling between carbon and deuterium which splits the peak into 393 

multiplets.  394 

 395 

In agreement with previous work [3, 30], the incorporation of deuterium into the cellulose 396 

molecular structure does not appear to significantly affect crystallinity, as indicated by the 397 

similar values of ca. 87 and 84% for H-CH and D-CH, respectively. With regards to the 398 

effect of the different PCW polysaccharides, while the incorporation of AX into the D-CH 399 

structure does not seem to induce any significant change in the crystallinity (XC = 81%), a 400 

decrease is observed with the addition of MLG (XC = 68%) and XG (XC = 59%). The 401 

same trend of reduced crystallinity has been previously reported for composite H-CH 402 

hydrogels with XG (ca. 16% crystallinity reduction) [14] and MLG (ca. 7% crystallinity 403 

reduction) [16], although the effect seems to be stronger for the D-CH composite 404 

hydrogels.  405 

 406 

The presence of XG in the rigid phase of D-CH-XG was confirmed by the detection of 407 

peaks located at 100 ppm and at 82 ppm, due to the C1 and C4 of xylose [14]. Calculating 408 

the ratio of the C1 xylose peak to the C1 cellulose peak, shows that the composite has ca. 409 

18% XG bound to the cellulose (i.e. 46% of the XG is bound to cellulose), in agreement 410 
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with earlier studies [14]. In the case of D-CH-MLG, the spectrum shows a minor peak at 411 

79-80 ppm that may be due to the C4 of MLG; however, if there were corresponding 412 

signals for the expected C1 position at 102 ppm [16], they would be overlapped by the 413 

cellulose C1 peak making it difficult to confirm. In this case, based on the ratio of the C4 414 

MLG peak to the C4 cellulose peak, the amount of MLG bound to cellulose is only ca. 415 

4%. It should be noted that all the samples contain more than 90% water and, thus, any 416 

PCW polysaccharide which was not bound to cellulose would be mobile and would not be 417 

observed in the 13C CP/MAS experiment. Therefore, these results indicate that certain 418 

fractions of XG (and possibly MLG) are bound to cellulose and potentially responsible for 419 

the crystallinity decrease observed in the corresponding composite D-CH hydrogels. 420 

 421 

 422 

Figure 3. 13C CP/MAS NMR of pure cellulose and composite hydrogels.  423 

 424 

Figure 4 shows the region corresponding to the OH and CH stretching bands in the ATR-425 

FT-IR spectra of native H-CH and D-CH. As expected, both samples display characteristic 426 

OH stretching bands in the region of 3500-3300 cm-1 [29, 30, 34]. The presence of OH 427 
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groups in D-CH is not surprising, since the OD groups originally present in the deuterated 428 

glucose are expected to be exchanged to OH groups after dissolving all the culture medium 429 

components in H2O. On the other hand, the intensity of the bands appearing at 3000-2800 430 

cm-1, attributed to CH stretching [29, 30], is strongly reduced in the D-CH sample as 431 

compared with H-CH. The reduction in the area under this band has been previously used 432 

to estimate the degree of deuteration in D-CH, providing a value similar to that estimated, 433 

using an alternative approach, by determination of the sample neutron SLD through SANS 434 

contrast variation experiments [3]. In the present study, a reduction of ca. 81% in the area 435 

under the CH stretching bands is estimated by comparing the D-CH spectrum with that 436 

from H-CH. Considering that each glucose unit in the cellulose molecule contains seven 437 

CH groups, such a decrease corresponds to an average of ca 1.3 CH groups and 5.7 CD 438 

groups in the D-CH molecular structure; this suggests an average monomer structure 439 

between C6D6H4O5 and C6D5H5O5 for D-CH. A previous D-CH batch produced by using 440 

exactly the same method was reported to present a structure of C6D5H5O5, based on FT-IR 441 

and SANS contrast variation experiments [3].  Consequently, the molecular structure in the 442 

D-CH sample characterised in the present work is assumed to be closer to C6D5H5O5. FT-443 

IR measurements were conducted on the hydrated material ex-H2O; a monomer structure 444 

of C6D7H3O5, would be attained from a fully deuterated cellulose after the OD groups 445 

originally present in the deuterated glucose are exchanged to OH groups when dissolving 446 

the culture medium components in H2O. In addition, the presence of other protiated 447 

components (such as peptone and yeast extract) in the culture medium and that are also 448 

involved in the Komagataeibacter xylinus glucose metabolism process inevitably further 449 

limits the degree of deuteration, as previously noted [3]. 450 

 451 
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 452 

Figure 4. FT-IR spectra of H-CH and D-CH. Peaks are normalized to the OH stretch.   453 

 454 

3.3 Micro- and nano-architecture: Combined USANS/SANS experiments 455 

SANS and USANS experiments were carried out to characterise the structure of native H-456 

CH and D-CH, as well as D-CH composites within the nano- and microscale size range. 457 

Samples were soaked in D2O prior to the experiments, since the appearance of structural 458 

features associated with the cellulose ribbons has been previously shown to be optimised 459 

when using this solvent (as opposed to H2O or H2O/D2O mixtures) as a result of H/D 460 

exchange undergone by the solvent held within the cellulose ribbons [2, 3]. Figure 5A 461 

shows the combined USANS/SANS data of the D2O-soaked H-CH, D-CH and composite 462 

hydrogels. As observed, the combination of both techniques allowed a very broad q range 463 

to be covered of ca. 3 x 10-5 – 0.6 Å–1. Several structural features, which can be more 464 

clearly identified in the corresponding Kratky plots (cf. Figure 5B), appear in the scattering 465 

patterns from all the samples. The shoulder features located within the region 0.01 < q / Å-1 466 

< 0.10 have been detected in the SANS patterns from protiated and deuterated cellulose 467 

hydrogels and arise from the existence of regions with distinct SLD values due to the sub-468 
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structure of cellulose ribbons [2, 3, 15]. These shoulders are more intense in the case of D-469 

CH and its composites, as compared with H-CH, due to a decreased contribution from 470 

interfacial scattering (i.e. decreased SLD contrast between the cellulose ribbons and the 471 

surrounding bulk D2O) as a result of the partial deuteration within the cellulose molecular 472 

structure. Interestingly, two additional shoulder features, which have not been previously 473 

reported for cellulose hydrogels, appear within the region 3 x 10-5 < q / Å-1 < 6 x 10-3. It 474 

should be noted that, over the whole q range, the scattering intensity decreases with the 475 

deuteration level of the samples, with the highest intensity for H-CH and the lowest 476 

intensity for D-CH. This is again related to the decreased SLD contrast between the solvent 477 

and the partially deuterated cellulose in D-CH (EDF^_` − EDF^aUb = 6.38 − 4.75 = 1.63 478 

x 1010 cm-2, assuming a structure of C6H5D5O5) compared to the SLD contrast with 479 

protiated cellulose in H-CH (EDF^_` − EDFbaUb = 6.38 − 1.84 = 4.54 x 1010 cm-2). In 480 

the case of the D-CH composites, the sample-solvent SLD contrast is expected to have 481 

intermediate values between those corresponding to H-CH and D-CH since they contain 482 

partially deuterated cellulose and protiated PCW polysaccharides. 483 

 484 
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 485 

 486 

Figure 5. Combined USANS/SANS data for pure H-CH, D-CH and D-CH composites 487 

with PCW polysaccharides (soaked in D2O) (A) and the corresponding Kratky plots (B). 488 

Solid lines correspond to the fitting of the experimental data using the sum model of a 489 

three-level Beaucage and a core-shell cylinder model. 490 

 491 
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Although a previous study reported on the USANS/SANS characterisation of bacterial 492 

cellulose covering a q range of 3 x 10-5 – 0.1 Å–1 , the data were interpreted merely by 493 

delimiting regions with different power-law exponents in the scattering curves [58]. It is 494 

possible to go far beyond this basic data interpretation and fully exploit the potential of 495 

combined USANS/SANS experiments by developing suitable models to fit the 496 

experimental data. However, the extremely complex structure of cellulose, which is 497 

hierarchically organised into different structural levels, has typically complicated the 498 

interpretation of small angle scattering data and only very recently has a model based 499 

upon a core-shell formalism been proposed to describe the SANS data from cellulose 500 

hydrogels [2, 3]. This core-shell formalism implicitly accounts for the sub-structure of 501 

cellulose microfibrils within ribbons and the role of moisture and, accordingly, it 502 

considers that cellulose ribbons are composed of two phases: (i) a core, containing 503 

impermeable crystallites surrounded by a network of paracrystalline cellulose and tightly 504 

bound water and (ii) a shell containing only paracrystalline cellulose and bound water. 505 

These two phases are expected to present different accessibility and H/D exchange when 506 

soaked in solvents, hence resulting in the formation of regions with distinct neutron SLD 507 

values. Based on this core-shell model, a function comprising the sum of a power-law 508 

term plus a core-shell cylinder with polydisperse radius was developed and applied to fit 509 

the SANS contrast variation data of protiated and deuterated cellulose hydrogels [2, 3]. 510 

The fitting function applied in the present study to fit the combined USANS/SANS data 511 

consisted of the sum of the core-shell cylinder with polydisperse radius term from the 512 

above described core-shell model (to describe the shoulder-like features detected at 0.01 < 513 

q / Å-1 < 0.10) plus a three-level Beaucage model (to account for the additional structural 514 

features located within the 3 x 10-5 < q / Å-1 < 6 x 10-3 range). As shown in Figures 5A and 515 

5B, the sum model produces good fits across the wide intensity and q range considered 516 
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(over 9 orders of magnitude in intensity and 4 orders of magnitude in q). The values 517 

obtained for the refined parameters are summarised in Table 3. 518 

 519 

The ribbon cross-section values estimated for H-CH (ca. 26.4 nm) and D-CH (ca. 29.2 nm) 520 

are very similar and consistent with the range of values estimated from the SEM 521 

characterisation. In agreement with previous results [3] and supporting the hypothesis of a 522 

slower synthesis rate, D-CH seems to present a less dense ribbon structure with a reduced 523 

cellulose volume fraction within the shell and greater H/D exchange in the cellulose 524 

contained within the core, as compared with H-CH. The overall ribbon cross-sections 525 

estimated for the composite D-CH hydrogels are ca. 29.9 nm, 28.8 nm and 27.1 nm for D-526 

CH-AX, D-CH-XG and D-CH-MLG, respectively. Whereas the shell represents ca. 11% 527 

of the overall ribbon cross-section for D-CH-XG, it decreases to values of ca. 7% for D-528 

CH-MLG and ca. 5% for D-CH-AX. This may be a result of strong cellulose-XG 529 

interactions being established. Close association between XG and the individual cellulose 530 

microfibrils is expected to disrupt the ribbon structure to a certain extent, promoting the 531 

accessibility of D2O towards the inner region of the cellulose ribbons. 532 

 533 

As expected, the strong hydrogen bonded network created between the cellulose 534 

microfibrils and bound water held within the core region limits the solvent accessibility 535 

and, as a result, the cellulose volume fraction within the ribbons’ core is larger than the 536 

volume fraction within the shell. Interestingly, the incorporation of XG into D-CH leads to 537 

a decreased cellulose volume fraction within the core. The same behaviour was observed 538 

for H-CH incorporating XG, where it was attributed to the ability of this PCW 539 

polysaccharide to interact with the individual cellulose microfibrils contained within the 540 

ribbons’ core [28].  541 
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 542 

The solvent exchange values indicate that ca. 20% of the water tightly bound to the 543 

cellulose microfibrils within the core is not exchanged when the samples are soaked in 544 

D2O. Additionally, as indicated by the cellulose exchange values, the H/D exchange is 545 

more limited within the core region due to the presence of non-accessible crystallites. It is 546 

worth noting that the cellulose H/D exchange within the core is further restricted by the 547 

incorporation of XG into the D-CH hydrogel. The addition of XG into H-CH has been 548 

reported to show the same behaviour and is consistent with a reduction in the amount of 549 

cellulose hydroxyl groups available for exchange due to the existence of strong cellulose-550 

XG interactions within the ribbons’ core [28]. 551 

 552 

Consistent with the crystallinity reduction determined from NMR characterisation, the sum 553 

model fit parameters associated with the core-shell formalism (i.e. the second term in 554 

equation (1)) suggest that XG is able to interact directly with the individual microfibrils 555 

composing the cellulose ribbons and is located both within the core and the shell of the 556 

ribbons; in contrast, AX and MLG domains are mostly limited to the surface (i.e. shell) of 557 

the ribbons. This result is in agreement with what has been previously reported for H-CH 558 

composite hydrogels with AX and XG [2, 15, 59]. It has been hypothesised that whereas 559 

AX interacts with cellulose once the crystallisation and aggregation of cellulose 560 

microfibrils has been completed, XG can establish interactions with cellulose 561 

simultaneously with the crystallisation/aggregation processes, hence promoting the 562 

formation of fewer crystalline cellulose microfibrils richer in the Iβ allomorph [15]. On the 563 

other hand, the interaction mechanism of MLG with cellulose has not been clearly 564 

established in the literature. Although MLG has been suggested to present a non-specific 565 

surface adsorption interaction mechanism, analogous to that of AX based on the NMR 566 
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characterisation and mechanical properties of H-CH composites [16],  a different study 567 

showed that only 12-13% of MLG was removed from the wall of wheat and maize 568 

coleoptiles by using a specific endo-(1→3)(1→4)-β-glucanase [60]. The results presented 569 

here suggest that the ability of XG and MLG to disrupt interactions within and between 570 

cellulose microfibrils during the crystallisation process may be linked to their cross-linking 571 

role as is demonstrated by microscopy characterisation (cf. Figure 2). However, while XG 572 

is able to establish strong interactions with the individual cellulose microfibrils, thus 573 

remaining trapped within the ribbons’ core, such strong interactions are limited in the case 574 

of MLG which, in turn, interacts with cellulose mostly at the ribbons’s surface level. Based 575 

on our previous studies [2, 3], a more extensive characterisation of the D-CH composite 576 

hydrogels is needed to fully understand the distinct interaction mechanisms of partially 577 

deuterated cellulose and these PCW polysaccharides at the different relevant structural 578 

levels. Future work will consist of SANS contrast variation experiments (which provide 579 

information on the ribbon structural level), with SAXS and XRD characterisation (which 580 

highlight the structural organisation of the individual cellulose microfibrils).   581 

 582 

To the best of our knowledge, the shoulder-like features appearing in the lower q region 583 

from the combined USANS/SANS data are reported here for the first time. To account for 584 

these features, a term corresponding to a unified equation (i.e. Beaucage model) with three 585 

structural levels was incorporated into the applied fitting function, as described in section 586 

2.6. The Beaucage model has been previously utilised to fit the SANS data from 587 

switchgrass lignocellulose, enabling the identification of morphological changes induced 588 

by a diluted acid treatment [61]. As observed in Figures 5A and 5B, the structural features 589 

within the 3 x 10-5 < q / Å-1 < 6 x 10-3 range are well described by using this mathematical 590 

function. 591 
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 592 

The characteristic dimensions of the structural features detected in the USANS/SANS data 593 

can be estimated from the Rg values obtained. The cellulose network in the hydrogels is 594 

composed of ribbons, which may be considered as long core-shell cylindrical objects with 595 

cross-sections within the range of 20-40 nm [3]. At the same time, these ribbons are 596 

composed of cellulose microfibrils, which can also be simplified as core-shell cylindrical 597 

objects with an overall diameter of ca. 3.0-3.5 nm [3]. Considering this and taking into 598 

account the approximate q values at which the two features are located (ca. 3 x 10-4 Å-1 and 599 

6 x 10-3 Å-1), we propose that these shoulders arise from the structure of cellulose 600 

microfibrils and ribbons in the longitudinal axis direction, i.e. Rg,3 from the longitudinal 601 

arrangement of cellulose microfibrils and Rg,2 from structural features in the ribbon 602 

longitudinal direction. Assuming a cylindrical morphology for both the microfibrils and the 603 

ribbons, the corresponding lengths can be calculated by applying the following equation 604 

for Rg based on a cylindrical rod with length L and radius R: 605 

 606 

��,�� = @-_
� + h-_

��           (2) 607 

 608 

where R2 is assumed to be equal to the cross-section values estimated from the sum model 609 

fitting (cf. Table 3) and R3 to the approximate cross-section reported for the impermeable 610 

crystalline core of cellulose microfibrils (i.e. 1.6 nm [3]). The calculated values for the 611 

characteristic lengths corresponding to Rg,2 and Rg,3 (L2 and L3, respectively) are: L2=1468 612 

± 7 nm and L3=142 ± 1 nm for H-CH, L2=1470 ± 13 nm and L3=180 ± 6 nm for D-CH, 613 

L2=1422 ± 9 nm and L3=150 ± 6 nm for D-CH-AX, L2=1367 ± 6 nm and L3=166 ± 6 nm 614 

for D-CH-XG and L2=1474 ± 6 nm and L3=166 ± 5 nm for D-CH-MLG.  615 

 616 
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The smallest characteristic length (L3), which ranges between ca. 140-180 nm, may be 617 

associated with the length of the cellulose crystalline domains. To date, information 618 

regarding the morphology of bacterial cellulose crystallites has been inferred from 619 

subjecting the native material to hydrolysis treatments. Based on microscopy 620 

characterisation, cellulose nanocrystals extracted by acid hydrolysis of bacterial cellulose 621 

have been reported to have lengths within the range of 100 nm to several µm [32-37]. The 622 

large variability in the length values is related to the heterogeneity in the acid hydrolysis 623 

procedures applied to extract these nanocrystals. It is known that several factors such as 624 

acid concentration, temperature and hydrolysis time have a strong effect on the extent to 625 

which the amorphous and paracrystalline domains are digested [34, 36] and consequently 626 

hydrolysis treatments with different characteristic parameters are expected to yield 627 

nanocrystals with distinct morphologies. It should be considered that the longer rod-like 628 

structures extracted by acid hydrolysis of bacterial cellulose have been shown to 629 

correspond to aggregates of 3-6 microfibrils rather than to individual crystallites [35]. 630 

Hence, the cellulose crystalline domain lengths may be smaller than some of the values 631 

previously estimated from acid-digested materials, especially when milder hydrolysis 632 

conditions are applied. As deduced from the L3 values, the cellulose crystallites in D-CH 633 

(ca. 180 nm) are larger than the crystallites in H-CH (ca. 142 nm). This suggests that the 634 

incorporation of deuterium atoms into the cellulose molecular structure has an effect on the 635 

synthesis process. As discussed above, it is probable that when d-glucose, instead of h-636 

glucose, is provided as the carbon source, the bacteria synthesise cellulose at a slower rate. 637 

This has been previously hypothesised as the potential cause for the less dense ribbon 638 

structure detected in D-CH compared to H-CH [3]. Although no connection between the 639 

synthesis process and the morphology of the produced cellulose crystallites has been 640 

established in the literature, it is likely that, at a slower synthesis rate, the distance between 641 
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the defective regions (i.e. cellulose amorphous domains) increases; to demonstrate this, 642 

identical acid hydrolysis treatments could be applied to H-CH and D-CH samples to 643 

confirm whether the length of the extracted crystallites is significantly different. Moreover, 644 

the incorporation of PCW polysaccharides into D-CH appears to induce the formation of 645 

slightly shorter crystallites which may arise from the establishment of interactions between 646 

the amorphous cellulose domains and a fraction of the PCW polysaccharides. However, 647 

these results should be interpreted with caution, as the same crystallite radius was used to 648 

estimate the crystallite length for all the samples. This assumption seems valid in the case 649 

of AX which, according to previous XRD characterisation, does not induce any significant 650 

modification in the cellulose crystallite cross-section [15]. In contrast, smaller crystallites 651 

have been observed for H-CH composite hydrogels with XG [15] and, consequently, the 652 

actual D-CH-XG crystallite length may be larger than the estimated value. Since the 653 

microfibril crystalline core radius can be determined by fitting the complementary SAXS 654 

data from cellulose hydrogels [2, 3], future work using SAXS characterisation to 655 

accurately determine the crystallite lengths for the pure and composite cellulose hydrogels 656 

would be beneficial. 657 

 658 

At the next structural level, bacterial cellulose ribbons have been reported to be 659 

periodically twisted along their longitudinal axis [55, 56, 62-64]. The mechanism leading 660 

to the development of twists has not yet been established. An initial hypothesis claimed 661 

that the twists could be created from the rotation of bacterial cellulose along its 662 

longitudinal axis [63]. However, it was demonstrated that the origin of these twists is more 663 

likely related to the intrinsic chirality of cellulose molecules [65, 66]. Based upon TEM 664 

images, the ribbon twisting periodicity has been estimated as ca. 1 µm [64, 67]. Moreover, 665 

mild acid digestion of bacterial cellulose has been reported to produce structures consisting 666 
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of  microfibril aggregates with an average length of ca. 1.2 µm [35]. If the twisting regions 667 

are considered as less structurally stable domains, then the mild acid hydrolysis applied in 668 

the cited work could proceed by disrupting the ribbon structure preferentially through the 669 

twisting domains. The values reported in the literature for the ribbon twisting periodicity 670 

are similar to the 1.4-1.5 µm characteristic lengths (L2) estimated for the pure and 671 

composite hydrogels. Nevertheless, it is also the case that different structural entities, such 672 

as bacteria cells remaining in the samples or water-filled pores in the hydrogel network 673 

structure could, in principle, also be responsible for the appearance of the shoulder-like 674 

feature detected in the scattering patterns. The dimensions of the remaining bacteria cells 675 

are ca. 447 ± 133 nm x 1735 ± 624 nm, as measured from SEM images. If the cell is 676 

considered to present a cylindrical shape, then the associated Rg value would be ca. 525 677 

nm. This value does not agree well with the Rg values provided by the unified fits and it is 678 

unlikely that the presence of bacteria cells is the source of the scattering feature; however, 679 

collecting the scattering patterns from hydrogel samples washed with NaOH to remove any 680 

bacteria cell debris would be desirable to fully discard this as a possibility. With regards to 681 

the water-filled pores in the hydrogel network structure, direct measurements from the 682 

SEM images (albeit with the caveat of the possibility of sample drying artefacts) indicate 683 

that the average pore size is ca. 500 ± 300 nm in the case of H-CH, D-CH and D-CH-AX, 684 

whereas it reduces to ca. 300 ± 200 nm for the D-CH-XG and D-CH-MLG composites. 685 

Thus, it also seems implausible that the shoulder features arise from the contrast between 686 

the water-filled pores and the ribbons, since the pore size does not match the q range at 687 

which the shoulders are located and it is also not modified by the incorporation of PCW 688 

polysaccharides. If the hypothesis of the shoulder feature arising from the ribbon twisting 689 

periodicity is correct, the results would indicate that neither the partial deuteration of the 690 

cellulose molecular structure nor the incorporation of PCW polysaccharides would have a 691 
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strong effect on the distance between two consecutive twists which is shown here to 692 

remain approximately constant at ca. 1.4-1.5 µm for all hydrogel samples.  693 

 694 

These results demonstrate the great potential of combining SANS and USANS 695 

experiments to characterise the multi-scale architecture of cellulose hydrogels, covering 696 

the size range relevant to the cellulose structural organisation in both the cross-sectional 697 

and longitudinal directions. In particular, the extended q range provided by USANS has 698 

enabled the identification of structural features on the micron size range in cellulose 699 

hydrogels. Based on prior knowledge of the system, it has been hypothesised that the 700 

observed shoulder-like features arise from the arrangement of crystalline/amorphous 701 

cellulose domains along the microfibril and from periodic ribbon twisting. If that is the 702 

case, USANS experiments would be extremely valuable to answer relevant questions that 703 

still remain open in this research area such as whether different bacterial strains, with 704 

distinct synthesis rates, are able to synthesise cellulose crystallites with varying 705 

morphologies or how the cellulose network structure is progressively broken down when 706 

subjecting native hydrogels to acid hydrolysis treatments. 707 

 708 

Table 3. Parameters obtained from fits of the sum model (three-level Beaucage plus core-709 

shell cylinder with polydisperse radius) for native H-CH, D-CH and D-CH composites 710 

with PCW polysaccharides (soaked in D2O). Standard deviations on the last digit are 711 

shown in parentheses. 712 

 H-CH D-CH D-CH-AX D-CH-XG D-CH-MLG 

Scale factor 0.0183(1) 0.0209(3) 0.050(1) 0.0450(2) 0.050(4) 

Core radius (nm)  9.44(9) 13.68(3) 14.2(2) 12.75(5) 12.58(8) 

Core length (nm) (*) 500.0 500.0 500.0 500.0 500.0 
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Polydispersity 0.376(3) 0.288(8) 0.254(4) 0.234(1) 0.229(2) 

Radial shell thickness 

(nm) 
3.78(3) 0.91(1) 0.76(1) 1.65(2) 0.98(6) 

Cellulose volume 

fraction (Core)  
0.218(2) 0.212(2) 0.168(4) 0.119(2) 0.232(4) 

Cellulose volume 

fraction (Shell) 
0.038(1)  0.001(1) 0.001(3) 0.093(1) 0.001(5) 

Cellulose exchange 

(core)  
0.48(1) 0.60(3) 0.60(1) 0.35(1) 0.63(1) 

Cellulose exchange 

(shell) 
1.0(6) 0.6(3) 1.0(3) 0.37(2) 1.0(1) 

Solvent exchange (core)  0.825(1) 0.821(1) 0.824(1) 0.803(2) 0.814(1) 

Solvent exchange 

(shell) (*) 
1.00 1.00 1.00 1.00 1.00 

SLD cellulose 

(1010 cm-2) (*) 
1.85 4.76 4.75 4.67 4.71 

SLD fully exchanged 

cellulose (1010 cm-2) (*) 
3.63 6.43 6.41 6.31 6.35 

SLD bulk solvent 

(1010 cm-2) (*) 
6.38 6.38 6.38 6.38 6.38 

SLD bound solvent 

(1010 cm-2) (*) 
7.97 7.97 7.97 7.97 7.97 

SLD bound H2O 

(1010 cm-2) (*) 
-0.70 -0.70 -0.70 -0.70 -0.70 

B1 (cm-1·sr-1) 0.05(2) 7(2)·10-5 7(2)·10-5 6(3)·10-5 2(1)·10-5 

PL1 1.69(3) 2.211(3) 2.34(6) 2.34(6) 2.44(7) 
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G2 (cm-1·sr-1) 2.48(4)·105 7.8(1)·105 2.01(4)·105 1.55(4)·105 1.95(4)·105 

Rg,2 (nm) 424(4) 425(4) 411(3) 395(4) 426(3) 

B2 (cm-1·sr-1) 0.2(1)·10-6 2(1)·10-6 12(7)·10-6 50(10)·10-6 20(10)·10-6 

PL2 2.75(7) 2.8(2) 2.70(9) 2.59(9) 2.6(1) 

G3 (cm-1·sr-1) 0.36(3)·103 0.4(1)·103 0.5(1)·103 1.3(4)·103 0.9(2)·103 

Rg,3 (nm) 41(1) 52(3) 43(2) 48(3) 48(2) 

B3 (cm-1·sr-1) 0.43(1)·10-6 0.031(2)·10-6 9.4(1)·10-6 0.018(6)·10-6 0.18(5)·10-6 

PL3 2.865(6) 3.63(8) 2.62(3) 4.00(7) 3.50(6) 

Parameters displayed with (*) were fixed during the fitting process.  713 

 714 

4. Conclusions 715 

Partially deuterated cellulose hydrogels (D-CH), and resultant composites with three major 716 

PCW polysaccharides (AX, XG and MLG), were synthesised by using d-glucose as the 717 

carbon source in the fermentation medium of Komagataeibacter xylinus. PCW 718 

polysaccharide incorporation into the hydrogels has been confirmed by monosaccharide 719 

analyses, while their effect on the multi-scale architecture of D-H has been investigated by 720 

combined USANS/SANS experiments and complementary microscopy and spectroscopy 721 

techniques. The combination of SANS with USANS enabled the coverage of four orders of 722 

magnitude in q and revealed unique structural features characteristic of the very broad size 723 

range explored that is highly relevant to the multi-scale architecture of cellulose hydrogels.  724 

 725 

The structural features located within the range 0.01 < q / Å-1 < 0.10 are well-described by 726 

the core-shell cylinder model included in the sum fitting function. This core-shell model 727 

accounts for the sub-structure of cellulose microfibrils within ribbons and for the role of 728 

moisture. The fitting results suggest that only XG is able to establish strong interactions 729 
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with the individual cellulose microfibrils, thus affecting the properties of the cellulose 730 

ribbons’ core; in contrast, cellulose-AX and cellulose-MLG interactions are mostly limited 731 

to the ribbons’ surface. On the other hand, the 13C-NMR results indicate that the presence 732 

of XG or MLG at the time of cellulose synthesis is able to perturb cellulose at the 733 

microfibril structural level, leading to reduced crystallinity values. This effect seems to be 734 

linked to their ribbon cross-linking role as revealed by SEM characterisation.  735 

Furthermore, an additional term consisting of a unified three-level function was included 736 

into the fitting function to account for the two shoulder-like features appearing within the 737 

range 3 x 10-5 < q / Å-1 < 6 x 10-3, which are reported for the first time for cellulosic 738 

materials. Considering a cylindrical morphology, features characteristic of length scales of 739 

140-180 nm and ca. 1.4-1.5 µm along the microfibrils and ribbon longitudinal axis, 740 

respectively have been identified. Based on the corresponding size ranges and prior 741 

knowledge of the cellulose structure, the first feature is proposed to arise from the length of 742 

cellulose crystallites, whereas the second feature is attributed to the ribbon twisting 743 

periodicity. In addition, the fitting results indicate that the crystallite length increases due 744 

to the potentially slower D-CH synthesis rate (cf H-CH); this hypothesis is in agreement 745 

with the larger and less dense ribbon structure observed for D-CH. The incorporation of 746 

PCW polysaccharides into D-CH appears to induce the formation of slightly shorter 747 

crystallites, which may originate from the establishment of interactions between these 748 

polysaccharides and the amorphous cellulose domains. In the presence of PCW 749 

polysaccharides, no effect is found on the ribbon twisting. 750 

 751 

This study has demonstrated the potential of combined USANS/SANS experiments to 752 

elucidate the multi-scale structure of cellulose hydrogels. In particular, USANS is 753 
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presented as a promising technique which may be extremely useful to investigate the 754 

structural arrangement of cellulose in the longitudinal direction. This is expected to 755 

provide valuable insights into understanding the cellulose biosynthesis process, 756 

fundamental to plant biology, and to determine the mechanism of cellulose digestion when 757 

subjected to hydrolysis treatments which is of relevance to diverse areas such as the 758 

optimisation of biofuels’ synthesis processes and the development of bio-based and 759 

biodegradable materials. 760 
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 977  978 

Figure S1. Higher magnification (x50000) FESEM micrographs of freeze-subtituted D-979 

CH-AX (A) and D-CH-MLG (B) showing the presence of nodular structures. 980 


