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Highlights: 

 Cellulose-pectin-calcium gels were produced varying order of assembly and pectin 

DE 

 

 Cellulose-pectin interactions occurred only when pectin was present during cellulose 

synthesis 

 

 Order of polysaccharide assembly impacted hydrogels microstructure and mechanical 

properties 

 

 The contribution to mechanical and diffusion properties depended on pectin DE 

 

 These results highlight the multiple roles that pectin might have in cell wall 

mechanics 
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Abstract 

Plant cell walls have a unique combination of strength and flexibility however, further 

investigations are required to understand how those properties arise from the assembly of the 

relevant biopolymers. Recent studies indicate that Ca
2+

-pectates can act as load-bearing 

components in cell walls. To investigate this proposed role of pectins, bioinspired wall 

models were synthesised based on bacterial cellulose containing pectin-calcium gels by 

varying the order of assembly of cellulose/pectin networks, pectin degree of 

methylesterification and calcium concentration. Hydrogels in which pectin-calcium assembly 

occurred prior to cellulose synthesis showed evidence for direct cellulose/pectin interactions 

from small-angle scattering (SAXS and SANS), had the densest networks and the lowest 

normal stress. The strength of the pectin-calcium gel affected cellulose structure, crystallinity 

and material properties. The results highlight the importance of the order of assembly on the 

properties of cellulose composite networks and support the role of pectin in the mechanics of 

cell walls. 

 

Keywords:  
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Introduction 

Pectin is one of the main components of the primary cell wall of most plants; it is present in  

cells during growth and development and between adjacent cells (middle lamella). 

Furthermore, pectin is also present in the secondary walls of cells in woody tissues. Pectin’s 
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functions are not only limited to cell structure, they have been found to play a role in plant 

growth and development, morphogenesis, cell–cell adhesion, signaling, wall porosity, and 

fruit development among others. The interaction of pectins with other cell wall 

polysaccharides and their influence on wall mechanics are not fully understood. Pectins are 

complex polymers which consist mainly of homogalacturonan (HG), rhamnogalacturonan I 

(RGI) and rhamnogalacturonan II (RGII) blocks covalently linked to one another (Atmodjo, 

Hao & Mohnen, 2013). HG is negatively charged, consisting of α-1,4-linked galacturonic 

acid (GalA) monomers that are partially methyl-esterified at the C-O-6 carboxyl. Interactions 

with calcium and other multivalent cations that lead to pectin gelation depend on the degree 

of methylesterification (DE) and the distribution of ester groups in homogalacturonan regions 

(Gidley, Morris, Murray, Powell & Rees, 1979; Peaucelle, Braybrook & Hofte, 2012; Strom, 

Ribelles, Lundin , Norton, Morris & Williams, 2007). Low methoxy pectins (DE < 50%) can 

form networks in the presence of divalent ions such as calcium. High methoxy pectins (DE > 

50%) can also gel in the presence of calcium ions, depending on the distribution of the ester 

groups, although their gel strength is lower than for low DE pectins (Strom, Ribelles, Lundin 

, Norton, Morris & Williams, 2007).  

In the most common representation of the primary plant cell wall of growing plants, pectin is 

depicted as an independent network, embedded in a load-bearing cellulose-hemicellulose 

network, with some structural proteins (Somerville et al., 2004). To date the major 

hemicellulose thought to be implicated in this network has been xyloglucan (XG). An 

increasing number of in vitro (Lin, Lopez-Sanchez & Gidley, 2015; Lin, Lopez-Sanchez & 

Gidley, 2016; Zykwinska et al., 2007) and in muro (Wang, Park, Cosgrove & Hong, 2015; 

Wang, Zabotina & Hong, 2012) studies suggest that pectin is not only present as an 

independent network but can also be in close contact with cellulose, through interactions with 

e.g. calcium-deficient regions of homogalacturonan (Lin, Lopez-Sanchez & Gidley, 2016) 
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and/or the arabinan and galactan sidechains characteristic of rhamnogalacturonan I (Lin, 

Lopez-Sanchez & Gidley, 2015; Zykwinska et al., 2007). In addition, studies on mutant 

plants (xxt1/xxt2; xylosyltransferase 1/2) (Park & Cosgrove, 2012) and tomato cell cultures 

(Shedletzky, Shmuel, Trainin, Kalman & Delmer, 1992) lacking XG, suggest that Ca
2+

-

pectate could presumably have a load bearing role in the absence of a cellulose-XG network 

(Peaucelle, Braybrook & Hofte, 2012). 

Studying the role of individual biopolymers on cell wall properties in planta is challenging, 

due to the heterogeneity of plant tissues/organs and the ability of plants to adapt in response 

to environmental stimuli and compensate for changes in their genetic code. Therefore, 

hydrogels based on bacterial cellulose have been used as a tool for studies of plant cell wall 

assembly and to investigate the role of polysaccharides in cell wall mechanics (Chanliaud, 

Burrows, Jeronimidis & Gidley, 2002; Lopez-Sanchez, Rincon, Wang, Brulhart, Stokes & 

Gidley, 2014; Whitney, Brigham, Darke, Reid & Gidley, 1995). We have recently 

demonstrated that pectins contribute to the mechanical properties of these types of cellulose 

networks when they are present as a solution, in the absence of Ca
2+

, through poroelastic 

effects (Lopez-Sanchez et al., 2016). Furthermore poroelasticity has been demonstrated for 

plant tissues in vivo in the work of Skotheim et al. (Skotheim & Mahadevan, 2005) however, 

its contribution to plant cell wall mechanics has not been investigated. 

Here we demonstrate the diverse roles that pectin has on the micro- and nano-structure as 

well as on the mechanical properties of cellulose networks synthesised by the bacterium 

Komagataeibacter xylinus as a function of order of assembly of the pectin-calcium gel (either 

before or after cellulose deposition by K. xylinus), pectin degree of methylesterification and 

calcium concentration. The compression and relaxation behaviour is explained by a 

poroleastic model, and the effect of pectin-calcium gel presence during cellulose synthesis on 

cellulose architecture at different length scales is studied using X-ray diffraction (XRD), 
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small angle X-ray and neutron scattering (SAXS, SANS), scanning electron microscopy 

(SEM) and fluorescence recovery after photobleaching in combination with confocal laser 

scanning microscopy (FRAP-CSLM). Our results provide a better understanding of the 

multiple roles of pectin on cellulose networks with implications for cell wall mechanics and 

the biological control of wall properties at different stages of plant growth and development. 

 

Materials and Methods 

Production of cellulose-pectin hydrogels with Ca
2+

-pectate gel assembly prior to cellulose 

synthesis 

Pure cellulose hydrogels (C) were produced following the method described by Chanliaud et 

al. (Chanliaud & Gidley, 1999) In brief the Komagataeibacter xylinus (formerly 

Gluconacetobacter xylinus) strain ATCC 53524 (Manassas, VA, USA) was cultivated in 

Hestrin and Schramm medium (HS) at pH 5 with a glucose concentration of 2 % w/v. Two 

types of pectin were studied: (i) a high methoxy pectin DE 68-76 (Pectin CJ205, citrus, 

Herbstreith & Fox KG, Neuenbürg/Württ, Germany containing 71.1 % pectin with a 

composition of 85.9 % uronic acids, 10.7 % galactose (Gal), 3. 1 % arabinose (Ara) and 0.3 

% xylose (Xyl); this material also contained 28.9 % glucose (Glu) which was added by the 

supplier and represented 7 % more glucose in the fermentation medium and, (ii) a low 

methoxy pectin DE 30 (Pectin AU-L 050/13, apple, Herbstreith & Fox KG , 

Neuenbürg/Württ, Germany with composition: 77.5 % uronic acid, 18.2 % galactose, 1.7 % 

xylose and 2.7 % glucose (Glu). Prior to inoculation, pectin and CaCl2 solutions were added 

to the HS incubation medium. The pectin final concentration was 0.5 % w/v; the 

concentration of CaCl2 was 2.5 mM for the low DE pectin and 6 mM CaCl2 for the high DE 

pectin. These samples are referred to as CP low DE pre-gel and CP high DE pre-gel. We also 

included a sample produced in a 0.5 % w/v low DE pectin and a calcium content of 12.5 mM, 
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to evaluate the effect of having a higher amount of calcium present during synthesis; this 

sample will be referred to as CP low DE strong pre-gel. 

All samples were cultivated statically at 30°C for 96 hours in 40 mm diameter containers. 

Pure cellulose hydrogels were washed 6 times with ice-cold water under agitation at 100 rpm 

to remove bacterial material and stored in 0.02 % NaN3 solution. All CP hydrogels were 

washed with 12.5 mM CaCl2 instead of water, and kept in 12.5 mM CaCl2 solution 

containing 0.02 % NaN3 in order to prevent leaching of pectin due to changes in the ionic 

environment. All composites were kept at 4°C until further analysis.  

Production of cellulose-pectin hydrogels with Ca
2+

-pectate gel assembly after cellulose 

synthesis 

Pure cellulose hydrogels, synthesised as described above, were kept in 0.5 % high DE or low 

DE pectin solution at room temperature overnight. Samples were collected and their surface 

was sprayed with 2.5 mM or 6 mM CaCl2 solution, for the low and high DE pectin 

respectively, following the method of Schuster et al. (Schuster et al., 2014). For the low DE 

pectin, a thin gel layer was immediately observed on the surface of the cellulose. 10 ml of 

12.5 mM CaCl2 was then added on top of the hydrogel and left in contact with the sample for 

two days at room temperature. The samples were then kept in 12.5 mM CaCl2 with 0.02 % 

NaN3 and stored at 4°C. These samples are referred to as CP high DE post-gel and CP low 

DE post-gel.  

Pectin depletion by EDTA washing 

Pectin depletion from the hydrogels was achieved by chelating the Ca
2+

 using excess 40 mM 

ethylenediaminetetraacetic acid (EDTA) with gentle agitation at room temperature for 24 

hours. Extracted materials were removed three times during washing. 

Chemical composition  

Monosaccharide analysis 
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Chemical composition was calculated from individual sugar contents on the basis of dry 

weights following the method by Pettolino et al. (Pettolino, Walsh, Fincher & Bacic, 2012) 

with modifications as described in (Lopez-Sanchez et al., 2016), and analysed by GC-MS 

using a high polarity BPX70 column. 

Uronic acid assay  

Total uronic acid content was measured following a modification of the method by Filisetti-

Cozzi et al. (Filisetti-Cozzi & Carpita, 1991) as described in reference (Lopez-Sanchez et al., 

2016). 

Calcium analysis 

Calcium was analysed by inductively coupled plasma optical emission spectroscopy (ICP-

OES). Samples were rinsed with deionised water prior to digestion to remove any calcium 

present in the samples not bound to pectin. Approximately 400 mg of sample was weighed 

and mixed with 6 ml of concentrated nitric acid and 2 ml of concentrated hydrochloric acid. 

Samples were pre-digested for 20 minutes at room temperature, subsequently 10 ml of triple 

deionised water (TDI) was added to each sample. Samples were digested for 20 min in a 

microwave digestor (Ethos-1, Milestone S.r.L, Bergamo, Italy). Digested and cooled samples 

were diluted with TDI water to a final volume of 25 ml. Samples were analysed using an 

ICP-OES instrument (Vista Pro,Varian, Melbourne, Australia) at 1200 W forward power. 

Sample introduction was done with a 2.0 ml/min Seaspray nebuliser and a Tracey spray 

chamber (Glass Expansion, Melbourne, Australia). Three replicate three-second integration 

readings were taken.  

Dry weight 

The total polysaccharide content was measured by drying the samples in an oven at 105°C for 

24 h. The sample weight was measured before and after drying. Each sample was measured 

in duplicate. 
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Scanning electron microscopy (SEM)  

Samples were prepared using a critical point dryer (Autosamdri-815, Tousimis, Rockville, 

Maryland 20852, USA) following a series of dehydration steps as described in reference 

(Lopez-Sanchez et al., 2016) and, examined in a JSM 7100 F scanning electron microscope 

(JEOL, Tokyo, Japan) at 5 kV and 10 mm working distance. Images were taken from at least 

three different locations of each sample and 6 images were taken from each position. All 

images were taken from the top side of the sample which is the one in contact with air during 

cellulose production. 

X-ray diffraction (XRD)  

The crystalline structure of the hydrogels was investigated by XRD measurements performed 

with a PANalytical X’Pert Pro diffractometer, according to the method described by 

Martinez-Sanz et al. (Martinez-Sanz, Lopez-Sanchez, Gidley & Gilbert, 2015). Peak fitting, 

crystallinity index and crystallite size determination were performed as described previously 

(Martinez-Sanz, Lopez-Sanchez, Gidley & Gilbert, 2015). 

Small angle X-ray and neutron scattering (SAXS and SANS) 

SAXS measurements, according to the method described by Martinez-Sanz et al. (Martinez-

Sanz, Lopez-Sanchez, Gidley & Gilbert, 2015), were performed on a Bruker Nanostar.  

SANS measurements were performed on the 40 m QUOKKA instrument at the OPAL reactor 

(Gilbert, Schulz & Noakes, 2006), following the experimental procedure described in (Lopez-

Sanchez et al., 2016). The SANS data of the pure and composite hydrogels were fitted using 

the Igor NIST analysis macro suite (Kline, 2006) and applying the core-shell model described 

previously (Martinez-Sanz, Gidley & Gilbert, 2015). A detailed description of the form factor 

function and the parameters defining the model can be found elsewhere (Martinez-Sanz, 

Gidley & Gilbert, 2015). 
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Fluorescence recovery after photobleaching in combination with confocal scanning laser 

microscopy (CSLM-FRAP) 

Fluorescein isothiocyanate labelled dextran (FITC-dextran) of two different molecular 

weights 70 000 (FD 70) and 500 000 (FD 500) g mol
-1

 (Sigma-Aldrich Pty. Ltd. Sydney, 

Australia) were selected based on previous results, which showed that both probes are 

suitable to characterise cellulose hydrogels (Lopez-Sanchez, Schuster, Wang, Gidley & 

Strom, 2015). Each diffusion probe was dissolved in deionized water to yield 500 ppm 

solutions. The hydrodynamic radius rH and free diffusion coefficients D0 of the probes in the 

absence of cellulose hydrogels were previously determined (Lopez-Sanchez, Schuster, Wang, 

Gidley & Strom, 2015), being 8.0 ± 0.5 nm and 30 ± 1.8 μm
2
 s

-1
 for FD 70 and 13.5 ± 1.1 nm 

and 17.8 ± 1.04 μm
2
s

-1
 for FD 500. 

Hydrogels were immersed in 10 ml of 500 ppm FITC-dextran solution, the containers were 

covered with aluminium foil and left overnight at 5°C to give enough time for the probes to 

be homogeneously distributed in the samples. An approximately 2 cm x 2 cm sized sample 

was cut; the surface that was in direct contact with the liquid medium during cellulose 

synthesis was absorbed on a cover glass slid, then loaded on the microscope stage with FRAP 

measurements carried out at ambient temperature.  

The CLSM system used consists of an LSM 700 Zeiss microscope (Jena, Germany) utilizing 

a 20 x, 0.8 numerical aperture objective, with the following settings: 200 x 200 pixels, zoom 

factor 4, yielding a pixel size of 0.41 μm. The 488 nm line of an argon laser was used to 

excite the fluorescent probes. FRAP experiments were conducted with a disk region of 

interest (ROI) of 30 μm diameter. The measurement routine consisted of 3 pre-bleach images, 

bleaching (laser at 100%) and post-bleaching (acquisition of images until the ROI intensity 

was constant). At least 3 FRAP measurements were performed on different spatial 

coordinates per sample. Each sample was measured in duplicate. We have previously 
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demonstrated (Lopez-Sanchez, Schuster, Wang, Gidley & Strom, 2015) that dextran probes 

do not interact with cellulose hydrogels and therefore diffusion of the probe occurs with no 

binding interaction between the probe and the sample. In the absence of interactions, a simple 

exponential equation can be used to fit the fluorescence recovery data  

 ( )    (   
  )          (3) 

where I∞ is the final intensity in the ROI following recovery and τ is the recovery time 

constant.  

FRAP analysis was performed within the ROI using the FRAP module in the Zen software 

(Zeiss, Germany). A recovery curve was plotted and normalized by taking into account the 

intensities immediately after bleaching and at the end of the experiment. 

 

Viscoelasticity measurements of Ca
2+

-pectate gels  

The viscoelasticity of pectin-calcium gels
 
(low and high DE) was assessed using a stress 

controlled rheometer TA 1500 (TA instruments, Delaware, USA) with concentric cylinders. 

An oscillatory test at 0.5% strain and 0.016 rad/s (1 Hz) was performed to determine the 

elastic and viscous moduli of pectin gels. Pectin solution (0.5% w:v) was loaded in the 

rheometer cup and warm 12.5 mM CaCl2 was added whilst gently stirring for 15 s at 10 s
-1

. 

Cure curves were recorded for 2 hours (Clark & Farrer, 1996). After this time, pectin gelation 

did not reach a final plateau therefore the gel values are considered only as estimates of the 

strength of the Ca
2+

-pectate gels. 

 

Mechanical testing and oscillatory rheology  

Measurements were carried out on a rotational rheometer (HAAKE Mars III Rheometer, 

Thermo Fisher Scientific, Karlsruhe, Germany) at a temperature of 25°C, and an attached 60 

mm diameter plate (calibrated for 40 mm diameter samples) coated with sand paper to reduce 
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sample slip during measurements. Hydrogel membranes were placed in the center of the 

bottom plate in the rheometer and, for each experiment, the gap was adjusted according to the 

sample thickness. Samples were compressed to the same initial cellulose concentration of 2% 

(w/w), calculated as previously described (Lopez-Sanchez, Rincon, Wang, Brulhart, Stokes 

& Gidley, 2014). Axial compression was applied on 2% cellulose samples at a constant speed 

of 1 μm/s for 100 μm whilst measuring the normal force. After the compression step, the 

relaxation of the normal force was followed simultaneously with a small amplitude 

oscillatory deformation test carried out for 180 s at a frequency of 0.016 rad/s (1 Hz) and at a 

constant stress of 1 Pa, chosen from the linear viscoelastic regime. The zero normal force was 

set for a gap where the upper plate was in close contact with the top surface of the samples. 

For each type of hydrogel at least three samples were measured. 

 

Poroelastic model  

The presence of a pectin gel induces a viscoelastic response that is not associated with the 

poroelastic effects characteristic of cellulose hydrogels (Lopez-Sanchez, Rincon, Wang, 

Brulhart, Stokes & Gidley, 2014). Therefore, an additional viscoelastic relaxation time is 

required to adequately capture the data. Since incorporating viscoelasticity in both radial and 

axial directions would introduce a number of parameters that cannot be unambiguously 

determined with a single test, viscoelasticity is incorporated in the axial direction only by 

linearly adding a Maxwell-like branch to the poroelastic stress      ( )   

  ( )        ( )     ̇ (   
 
 

 )                         (4) 

and 

  ( )        ( )     ̇ ( 
 
    
    

 

 )                         (5) 



13 
 

where    is an effective viscoelastic modulus,  ̇ is the constant strain rate and 

                   relaxation time.       is calculated as described in previous work (Bonilla, 

Lopez-Sanchez, Gidley & Stokes, 2016). 

Results and Discussion 

Composition of cellulose-pectin hydrogels containing Ca
2+

-pectate gels  

The chemical composition of all hydrogels produced in the presence of pectin was analysed 

after carefully removing a top loose pectin gel layer which did not contain cellulose, to ensure 

that pectin-calcium gels were incorporated within the cellulose hydrogels. The top loose layer 

was removed with tweezers and scalpel and the remaining solid material was used for 

chemical, structural and mechanical studies. Chemical analysis revealed that the main 

component of the removed top loose layer was uronic acid arising from calcium gelation of 

pectin coating the surface of the cellulose hydrogels. 

Interestingly, the order of assembly of Ca
2+

-pectate gel into the cellulose networks did not 

affect the incorporation level of pectin in the composite hydrogels (Table 1). However, pectin 

incorporation level did depend on pectin type. Pectin content was higher for the low DE 

pectin samples (35.7 % and 36.3 % for pre- and post-gel respectively) compared to the high 

DE pectin samples (18.1 % and 19.5 % for pre- and post-gel respectively). It has been 

previously shown (Chanliaud & Gidley, 1999) that the incorporation of Ca
2+

-pectate gels 

(prior to cellulose synthesis) into cellulose networks was higher for low DE pectin compared 

to high DE pectin and likely related to the different calcium responsiveness of low and high 

DE pectins.  

The total polysaccharide concentration was larger for the pre-gels, especially in the case of 

the high DE pectin (Table 1); this indicates that the pre-gels held less water and were denser 

than the post-gels. Calcium incorporation was very similar in all samples 2-3 % (dry weight), 

confirming that it was possible to gel pectin by slow diffusion of calcium into the cellulose 
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hydrogels. Cellulose-pectin hydrogels produced in the presence of higher amounts of calcium 

(12.5 mM) were inhomogeneous and fragile; as a result, values for the pectin incorporation 

(17.7 % dry weight) should be interpreted with care since different parts of the sample will 

have different incorporation levels.  

Table 1. Chemical composition and crystallinity of cellulose-pectin hydrogels before and 

after washing three times with 40 mM EDTA. *Pectin content is based on analysis of total 

uronic acids. (nd = not determined). All values correspond to the average of two 

independently hydrolysed samples. The standard variation for the total uronic acid test is ± 5 

%. The standard variation for the concentration calculations is 0.1-0.3 %. Different letters in 

the same column denote significant differences. Crystallinity index (XC) and cross-sectional 

dimensions of crystallite sizes in the direction perpendicular to the (100), (010) and (110) 

planes (D100, D010 and D110), were determined from the XRD patterns of air-dried samples. 

 

Sample 

 

Sample 

code 

 

Total 

uronics* 

(% dry 

weight) 

Total 

polysaccharide 

concentration 

(% wet weight) 

 

Cellulose 

concentration  

(% wet weight) 

 

Calcium  

(% dry 

weight) 

XC 

(%) 

D100 

(nm) 

D010 

(nm) 

D110 

(nm) 

Cellulose C 0 0.9a 0.9 nd 98.9 4.9 7.5 6.2 

Cellulose 

produced in 

Ca2+-pectate gel  

(low DE) 

CP low DE 

pre-gel 

35.7a 1.5a,b 1 1.9 92.1 4.4 6.6 5.7 

Cellulose + post 

addition of 

Ca2+-pectate gel 

(low DE) 

CP low DE 

post-gel 

36.3a 1.12a 0.7 2.0 98.8 4.6 7.0 6.1 

Cellulose 

produced in 

Ca2+-pectate gel 

(high DE) 

CP high DE 

pre-gel 

18.1b 1.8b 1.5 3.1 93.9 4.6 7.6 5.8 

Cellulose + post 

addition of 

Ca2+-pectate gel 

(high DE) 

CP high DE 

post-gel 

19.5b 0.71a 0.6 2.7 99.6 5.0 8.3 6.5 

Cellulose 

produced in 

Ca2+ pectate 

strong gel 

(low DE)  

CP low DE 

strong pre-

gel 

17.7b 1.9b 1.5 nd 88.0 4.6 6.9 5.7 

Washed 

cellulose 

produced in 

Ca2+-pectate gel  

(low DE) 

Washed CP 

low DE pre-

gel 

6.8c 2.2b 2.0 nd 98.0 4.8 7.5 6.5 

Washed 

cellulose + post 

addition of 

Ca2+-pectate gel 

(low DE) 

Washed CP 

low DE 

post-gel 

3.7c 1.0a 0.9 nd 99.6 5.0 7.9 6.7 
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Washed 

cellulose 

produced in 

Ca2+-pectate gel 

(high DE) 

Washed CP 

high DE pre-

gel 

5c 1.1a 1 nd 95.9 4.7 7.0 6.0 

Washed 

cellulose + post 

addition of 

Ca2+-pectate gel 

(high DE) 

Washed CP 

high DE 

post-gel 

0.0c 1.3a 1.3 nd 99.7 4.9 9.7 6.7 

Washed 

cellulose 

produced in 

Ca2+ pectate 

strong gel 

(low DE) 

Washed CP 

low DE 

strong pre-

gel 

7.6c nd nd nd 89.7 4.7 6.1 5.7 

 

After calcium chelation using EDTA, most of the pectin (80-90 %) was removed from the 

low DE pectin samples. A small percentage of pectin remained, 6.8 % (dry weight) and 3.7 % 

for the pre- and post-gel respectively. For the high DE pectin samples, ca. 70 % pectin was 

removed from the pre-gel by EDTA washing (5 % dry weight remaining) and 100% was 

depleted from the post-gel. Thus a large fraction of pectin was easily removed from the pre-

gels by calcium chelation and a minor fraction remained even after multiple EDTA washing. 

In the post-gels either all, or almost all, of the pectin was removed by washing the samples 

with EDTA (Table 1). Two pectin fractions have also been found in cellulose hydrogels 

produced in pectin solutions, in the absence of calcium (Lopez-Sanchez et al., 2016): a major 

fraction associated with (adsorbed to) cellulose surfaces, which was depleted by water 

washing, and a minor fraction that remained after water washing and that was able to interact 

with cellulose at the molecular level. The amount of bound pectin is related to both the pectin 

gelation mechanism and to the mechanism of cellulose-pectin interaction (which is limited to 

the surface of cellulose ribbons in the case of the post-gels). 

 

Microstructure of cellulose-pectin hydrogels 

All hydrogels were disk in shape with a diameter of 40 mm and 2-3 mm thickness. Figure 1 

shows the microstructure of the cellulose-pectin hydrogels. Before washing, the cellulose 

ribbons appeared to be embedded in a dense pectin matrix (see Figure S1) in the low DE 
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samples. After washing with EDTA, the cellulose ribbons, with a diameter of 50-100 nm and 

random orientation, could be clearly detected. Although not detected in the SEM 

micrographs, the individual microfibrils in bacterial cellulose have been reported to present a 

diameter of ca. 5nm (Martinez-Sanz, Lopez-Sanchez, Gidley & Gilbert, 2015). Micrographs 

of washed low DE post-gels revealed a more open cellulose network than that of washed low 

DE pre-gels, suggesting a denser structure for the pre-gels, in agreement with the total 

polysaccharide concentration (Table 1). The microstructures of the cellulose-pectin hydrogels 

containing high DE pectin were qualitatively similar to the ones containing low DE pectin. 

The cellulose network of the post-gel sample, which could be observed after washing, was 

more open than for the pre-gel. Pre-gel samples showed denser cellulose networks, similar to 

the ones observed for low DE pectin samples and pure cellulose, consistent with 

compositional analysis (Table 1). 

 

Figure 1. Scanning electron microscopy images of cellulose-pectin-calcium hydrogels with 

low and high DE pectins. Hydrogels were prepared by varying order of assembly. Cellulose 

was synthesised in the presence of pectin-calcium gels (pre-gel) or the pectin-calcium gel was 
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introduced after cellulose synthesis (post-gel). Top raw: unwashed hydrogels. Bottom raw: 

hydrogels after EDTA washing. Scale bar 1µm.  

 

Samples produced in the presence of a higher CaCl2 concentration were inhomogeneous and 

broke easily upon handling. Microscopic analysis revealed a heterogeneous structure in 

which patches of Ca
2+

-pectate gels were aggregated in close proximity to the cellulose 

ribbons (Figure S1).  

 

Crystalline configuration: XRD of air-dried composites 

As observed in Figures 2A and 2B, the patterns from the cellulose-pectin hydrogels 

containing Ca
2+

-pectate gels are quite similar to that of pure cellulose, presenting the three 

diffraction peaks characteristic of the cellulose Icrystalline allomorph at 2 values of 14.5°, 

16.9° and 22.7° (corresponding to the (100), (010) and (110) crystalline planes, respectively). 

Although the position of the peaks is not affected by the incorporation of pectin, hence 

indicating that the I/Iβ allomorph is not affected significantly, the relative intensity and the 

peak widths are modified. Table 1 summarises the crystallinity index and crystallite sizes 

estimated from peak fitting. The incorporation of pectin gels leads to a reduction in the 

crystallinity index and crystallite cross-section, this effect being more obvious for the low DE 

pectin and, in particular, for the CP low DE strong pre-gel. This effect (Table 1) is related to 

the strength of the Ca
2+

-pectate gel, with stronger pectin gels having a greater effect on the 

cellulose crystallinity. The elastic modulus G’ of the gels formed by low DE pectin and high 

DE pectin with 12.5mM CaCl2 was measured as an indication of gel strength. It was found 

that the G’ of the low DE pectin gel was 475 Pa and tan δ = 0.11, whilst the high DE pectin 

had a G’ of 7.6 Pa and tan δ = 0.22. In agreement with this hypothesis, cellulose-pectin 
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hydrogels with the high DE pectin contained the weakest Ca
2+

-pectate gels and had the least 

effect on cellulose crystallinity (Table 1). 

It is interesting to note that the effect of pectin gels on crystallinity is significantly weaker 

than that previously reported for pectin solutions (Lopez-Sanchez et al., 2016). The 

diffraction pattern of pectin when prepared as a solution showed a broad amorphous halo 

centred at around 19.8° and a very weak peak at 15.8° (Lopez-Sanchez et al., 2016). In 

contrast, as shown in Figure 2A, the pectin gels, regardless of the amount of Ca
2+

,
 
present two 

weak amorphous halos centred at 12.1° and 22.5° and several small diffraction peaks located 

at 14.8°, 29.7° and 31.8°; this is indicative of the formation of a more ordered structure, as 

described by e.g. the egg-box model (Grant, Morris, Rees, Smith & Thom, 1973), when 

pectin is in the form of Ca
2+

-pectate gels. The strong effect observed for the pectin solutions 

was attributed to a cellulose-pectin phase separation occurring when the samples were air-

dried, with the non-interacting pectin excess migrating to the surface of the sample (Lopez-

Sanchez et al., 2016). Such an effect would be limited in the case of the pectin gels, hence 

having a weaker effect on the shape of the diffraction patterns from the composite hydrogels. 

After washing the hydrogels with EDTA, the samples show almost the same crystallinity and 

crystallite size as native pure cellulose, except for the sample synthesised in the presence of 

the largest concentration of CaCl2, namely the CP low DE strong pre-gel. This indicates that 

although there is a small amount of pectin which remains in the samples after washing with 

EDTA, it does not have a significant effect on the cellulose crystalline structure. In the 

particular case of the CP low DE strong pre-gel, the high viscosity of the culture medium 

may have affected the cellulose assembly, hence leading to the formation of more defective 

cellulose microfibrils, i.e. with lower crystallinity. 

None of the post-gel samples presented a significant effect on the cellulose crystallinity. This 

is unsurprising, since the addition of Ca
2+

-pectate in these samples occurred after cellulose 
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synthesis and, therefore, is not expected to result in the establishment of strong interactions 

between pectin and the individual cellulose microfibrils. 

 

Figure 2. XRD patterns of pure cellulose hydrogels and cell wall models with Ca
2+

-pectate 

gels before and after washing with EDTA (A) low DE pectin and (B) high DE pectin 

samples. 

Small angle scattering (SAXS and SANS) 

SAXS experiments showed, as a general trend, that the incorporation of pectin into the 

hydrogels led to a decrease in the intensity within the low q region (Figures 3A and 3B). Such 

an effect has been previously related to a decreased contrast in scattering length density 
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(SLD) due to the partial replacement of water by pectin between cellulose microfibrils and/or 

ribbons (Lopez-Sanchez et al., 2016) (see Table S1 for the SLD values of the different 

components forming the hydrogels). This would explain why the effect is more evident in the 

case of the low DE pre- and post-gels as compared with the high DE pectin gels, since the 

latter contain less pectin (Table 1). After EDTA washing, and removing most of the pectin, 

the scattering intensity remains constant or slightly decreases for most of the samples, but a 

significant increase in the intensity is observed for the CP low DE pre-gel. This effect is 

consistent with the increase in sample density (concentration) after washing (Table 1).  

Interestingly, the scattering pattern from the CP low DE strong pre-gel shows a small peak at 

ca. q = 0.13 Å
-1

 (indicated by an arrow in Figure 3A), corresponding to a real distance of ca. 

5 nm. This peak has been previously detected in the SAXS patterns of air-dried bacterial 

cellulose and has been attributed to the centre-to-centre distance between the crystalline 

cellulose microfibrils, which are closely packed together in the absence of moisture 

(Martinez-Sanz, Lopez-Sanchez, Gidley & Gilbert, 2015). This observation may be indicative 

of the cellulose microfibrils being more closely packed in this sample, confirming that a 

dense cellulose network structure arose in this case, most likely due to the presence of a 

robust pectin network, promoting cellulose self-interactions during the biosynthetic assembly 

process. 

The SAXS patterns of the air-dried samples were also collected (Figure 3C). As expected, all 

the samples, except for the high DE post-gel, present the cellulose interfibrillar peak located 

at ca. q = 0.13 Å
-1

, becoming more visible than for the pure cellulose, especially in the case of 

the CP low DE strong pre-gel. According to the peak position, intensity and width values 

estimated by fitting the scattering intensity within the q range of interest with a power-law 

plus Lorentzian peak function, the improved appearance of this peak is a consequence of the 

reduced interfacial scattering caused by the presence of pectin, except for the CP low DE 
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strong pre-gel. In that case, the creation of larger SLD contrast between crystalline and 

amorphous domains in this less crystalline sample might also be responsible for the 

appearance of a more intense interfibrillar peak. The scattering curve of pure cellulose and 

the high DE post-gel are almost identical but with reduced intensity for the latter due to the 

lower contrast in the presence of pectin, which could explain why the peak is not present in 

this sample. Additionally, all the pre-gels present a broad shoulder, similar to that previously 

detected for pectin solutions (Lopez-Sanchez et al., 2016), centred at ca. 0.07A
-1

, 

corresponding to a real distance of ca. 9 nm. These shoulders have been attributed to the 

pectin domains interacting with the individual cellulose microfibrils (Lopez-Sanchez et al., 

2016). The fact that the shoulders are absent in the scattering patterns from the post-gels 

confirms that discrete cellulose-pectin interactions at the microfibril level are not established 

in this case. 

Several important implications may be deduced from the SAXS results. First of all, the 

incorporation of Ca
2+

-pectate gels into the hydrogels leads to the formation of denser 

networks. Secondly, and in agreement with the XRD results, pectin may be able to establish 

interactions with the individual cellulose microfibrils when incorporated into the culture 

medium (i.e. prior to assembly into mature ribbons), while only ribbon surface interactions 

can arise when the pectin gels are added after the cellulose has been synthesised. 

Furthermore, in the case of the pre-gels, the cellulose-pectin network structure created with 

the low DE and high DE pectins seems to be quite different: while cellulose recovers partially 

its hydration level upon removal of the high DE pectin gel, the opposite happens when 

removing the low DE pectin gel. This may be indicative of a collapse of the cellulose 

microfibrils when the pectin domains are removed in the latter case. 
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Figure 3. SAXS measurements from pure cellulose hydrogels and composites with Ca
2+

-

pectate gels in the hydrated state, before and after washing with EDTA. (A) Low DE pectin 

and (B) high DE samples. (C) SAXS Kratky plots from the corresponding air-dried samples.  
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In addition to the SAXS experiments, the hydrogels were characterised by SANS to probe the 

structure at the ribbon size range. As shown in Figure S2, while the 2-D SANS patterns of all 

the samples presented isotropic scattering, the CP low DE pre-gel, before and after washing 

with EDTA, showed slightly anisotropic behaviour. The scattering intensity in the equatorial 

and meridional directions was obtained by applying reduction procedures in which the data 

were sector-averaged and the so-obtained patterns are shown in Figure S3. The intensity in 

the equatorial direction is ca. 1.5-fold the intensity in the meridional direction over the whole 

q range. Hence, the anisotropy in these particular samples is related to the preferential 

orientation of the cellulose network structure along a certain direction, which is promoted by 

the presence of low DE Ca
2+

-pectate in the culture medium and is maintained after most of 

the pectin has been removed.  

 

The radially averaged data, displayed in Figures 4A and 4B, show the appearance of 

shoulder-like features which have been previously detected in the SANS patterns of pure 

cellulose hydrogels (Martinez-Sanz, Lopez-Sanchez, Gidley & Gilbert, 2015) and hydrogels 

containing pectin solutions (Lopez-Sanchez et al., 2016). As observed, the scattering intensity 

for most of the composite hydrogels decreases in comparison to the pure cellulose and in the 

particular case of the pre-gel samples, the shoulder features become more pronounced, 

especially with the low DE pectin. The decrease in the scattering intensity is likely to be a 

consequence of the denser network structure observed in the composite hydrogels. On the 

other hand, the more defined shoulders may arise from the presence of pectin coating the 

cellulose microfibrils, therefore affecting the properties of the ribbons’ core. 

 

The detected shoulder features have been assigned to the gradual exchange undergone by the 

cellulose ribbons when soaking the cellulose hydrogels in D2O (Martinez-Sanz, Gidley & 
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Gilbert, 2015; Martinez-Sanz, Lopez-Sanchez, Gidley & Gilbert, 2015). According to a 

previously developed model, cellulose ribbons can be described as core-shell systems, 

containing a core composed of cellulose microfibrils (crystalline and paracrystalline domains) 

interacting with each other, and with bound solvent by means of hydrogen bonds and a more 

accessible shell composed of hydrated paracrystalline cellulose. The same core-shell cylinder 

plus power-law model previously used to fit the SANS data from different cellulose 

hydrogels (Martinez-Sanz, Gidley & Gilbert, 2015; Martinez-Sanz, Lopez-Sanchez, Gidley & 

Gilbert, 2015; Martinez-Sanz, Mikkelsen, Flanagan, Gidley & Gilbert, 2016) was applied to 

successfully fit the experimental data from the cellulose/Ca
2+

-pectate hydrogels (Figures 4A 

and 4B). The associated fitting parameters (Table S2) indicate that the cellulose ribbon 

structure is affected for the hydrogels synthesised in the presence of pectin gels (i.e. pre-gels) 

and for the high DE pectin post-gel. Specifically, the overall ribbon cross-section increases 

from ca. 28 nm for the pure cellulose to ca. 33 nm for the CP low DE pre-gel and CP low DE 

strong pre-gel, ca. 32 nm for the CP high DE post-gel and ca. 36 nm for the CP high DE pre-

gel. The (apparent) cellulose volume fraction within the core appears to decrease and the 

solvent H/D exchange increases with the incorporation of pectin into the system. According 

to the densification effect indicated from SAXS and SEM characterisation, the fitting results 

seem to indicate that the SLD within the ribbons’ core increases due to the presence of pectin 

(see Table S1 for approximate values of the neutron SLD of pectin). On the other hand, the 

cellulose volume fraction within the ribbons’ shell tends to increase with the addition of 

pectin, confirming the existence of less hydrated systems as already suggested by SAXS. 

The fitting results suggest structural heterogeneity for the CP low DE post-gel and for all the 

samples after pectin depletion by washing with EDTA. This is demonstrated by the absence 

of characteristic shoulders in the corresponding SANS patterns and the large core radius 
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polydispersity values obtained. Such heterogeneity is in fact observed in the corresponding 

SEM images (Figure 1), where ribbon aggregates are detected after pectin depletion. 

 

Figure 4. SANS Kratky plots from the pure cellulose and cellulose/Ca
2+

-pectate gels (soaked 

in D2O), before and after washing with EDTA. (A) Samples containing low DE pectin and 
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(B) high DE pectin. Solid lines correspond to the fitting of the experimental data using the 

core-shell model. 

Mechanics and poroelastic behaviour: effects of order of assembly. 

To evaluate the impact of having a second networked polymer in the cellulose structure on 

the mechanical properties, the samples were first concentrated to the same cellulose content 

(i.e. 2%, which corresponded to thicknesses of 1.3 ± 0.6 mm and 1.2 ± 0.3 mm for unwashed 

and washed samples respectively) by compression. We have previously shown that pure 

cellulose and cellulose-hemicellulose hydrogels have a near zero Poisson’s ratio, which 

enables the cellulose concentration to be recalculated as the samples are compressed and 

liquid is released, whilst their diameter remains constant (Lopez-Sanchez, Rincon, Wang, 

Brulhart, Stokes & Gidley, 2014). As observed in Figure 5A, despite having similar pectin 

and calcium incorporation, the addition of Ca
2+

-pectate gel after cellulose synthesis (CP low 

DE post-gel) led to higher normal stress, or higher load bearing ability, than when the pectin 

was present prior to cellulose synthesis (CP low DE pre -gel), 1166 Pa for the post-gel and 

410 Pa for the pre-gel (Table 2). Both types of samples showed higher normal stress than 

pure cellulose with a value of 127 Pa, indicating than the presence of a Ca
2+

-pectate gel 

increased the resistance to compression of these hydrogels. Removal of the pectin gel by 

calcium chelation using EDTA led to a decrease in normal stress; this demonstrates that the 

pectin gel itself contributes to resistance to compression. Washed pre-gels had higher normal 

stress that the washed post-gels, in agreement with the presence of denser cellulose networks 

in the pre-gels, as shown by scattering and microscopy data. 
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Figure 5. Compression-relaxation behaviour of hydrogels (2 % cellulose) containing Ca
2+

 

pectate gel added prior to, or after, cellulose synthesis a) Low DE pectin and b) High DE 

pectin. Symbols represent experimental data. Solid lines represent fitting to a poroelastic 

model (Bonilla, Lopez-Sanchez, Gidley & Stokes, 2016). 

 

It has been previously demonstrated that hydrated cellulose networks in pure and composite 

hydrogels containing hemicelluloses behave as poroelastic materials (Lopez-Sanchez, 

Rincon, Wang, Brulhart, Stokes & Gidley, 2014) (Lopez-Sanchez, Cersosimo, Wang, 

Flanagan, Stokes & Gidley, 2015). In this work, a modified poroelastic theory is used to 

explain and analyse the compression-stress relaxation. The poroelastic or biphasic theory 

predicts that, under unconfined compression, the fluid phase will contribute to the 

deformation generating a high internal pressure, depending on its viscosity and viscoelastic 

properties which, in turn, contributes to the normal stress and resistance to compression. A 

second interpenetrating, isotropic network with low porosity such as a pectin gel will reduce 

the permeability and increase the sample elasticity, while additionally introducing a second 

relaxation time due to its intrinsic viscoelasticity. This theory predicts the mechanical 

behaviour of materials which can be defined as porous soft systems filled with a fluid phase. 

Table 2 summarises the parameters obtained from the experiments and from fitting the data to 
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the poroelastic model. Applying the poroelastic theory, parameters are obtained such as the 

radial (Er) and axial moduli (Ez), the equilibrium axial modulus (Ef) and an estimation of 

sample elasticity from Ef/Ez*100 (100 indicates totally elastic sample). All samples showed a 

radial modulus larger than the axial modulus, characteristic of samples which are strong 

radially, as observed for these cellulose hydrogels. However, pre-gels had lower moduli than 

post-gels suggesting that the presence of a pectin-calcium gel during cellulose synthesis led 

to overall weaker structures than when the pectin gels where assembled after cellulose 

production. The ratio Ef/Ez of the pre-gels was larger compared to that of the post-gels, 

indicating the more elastic nature of the pre-gels. Samples in which the pectin-calcium gels 

were present during cellulose deposition showed higher permeability than those with post 

addition of the pectin-calcium gels. Removal of Ca
2+

-pectates by EDTA washing increased 

the ratio Ef/Ez of both pre- and post-gels, indicating that the pectin gel reduced hydrogel 

elasticity. Furthermore, the permeability of washed low DE pectin samples increased, 

suggesting that the pectin-calcium gel controlled sample permeability i.e. it was the 

component with the smallest mesh size. This change in permeability was less evident in the 

samples containing high DE pectin. 

Although the chemical composition of the Ca
2+

-pectate gel in pre- and post- gel cell wall 

models was very similar (Table 1), the microstructural analysis revealed that the cellulose 

network (at all length scales) was denser in the pre-gels or, in other words, they held less 

water. The differences in compression behaviour between pre- and post- gels could be due to 

the different distribution of the Ca
2+

-pectate gels between assembly before or after cellulose 

synthesis. Assembly of the Ca
2+

-pectate gel after cellulose synthesis is proposed to lead to a 

more homogeneous distribution of the gel, whilst synthesis of cellulose in the presence of the 

Ca
2+

-pectate could generate heterogeneities in the microstructure which make it easier for the 

water to escape during compression, generating lower internal pressure. Pre-gels had less 
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water and a more heterogeneous structure; due to the poroelastic nature of these systems, 

these two parameters will lead to lower compression stress.  In the post-gels, a more 

homogeneous pectin gel network may create a more tortuous path for the water to leave the 

system whilst, in the pre-gel samples, heterogeneities could lead to local aggregation of 

pectin gel and water channels enabling water to leave the system more readily. Indeed, this 

could be reflected in the different values of permeability k, post-gels have a lower k, for both 

low and high DE (Table 2). 

Table 2. Experimental peak normal stress and parameters obtained from fitting experimental 

data to the poroelastic model (Bonilla, Lopez-Sanchez, Gidley & Stokes, 2016). Cellulose 

hydrogels (2% cellulose) containing Ca
2+

-pectate gels of different degree of methyl 

esterification. Pectin gels were introduced before or after cellulose deposition. Pure cellulose 

is shown for comparison. Er - radial modulus, Ez - instantaneous axial modulus, Ef - 

equilibrium axial modulus and k - permeability. 

Sample Peak 

normal 

stress 

(Pa) 

Er 

(kPa) 

Ez 

(kPa) 

Ef 

(kPa) 

Ef/Ez*100 k x 

10
-13

 

(m
2
) 

C 127 ± 27 56.5 0.62 0.29 47.0 3.6 

CP low DE pre-gel 410 ± 190 56.9 2.83 1.29 45.6 3.2 

Washed CP low DE pre-gel 184 ± 37 26.2 5.48 4.77 87.2 11 

CP low DE post-gel  1166 ± 

381 

113.8 4.83 1.83 37.9 0.3 

Washed CP low DE post-gel 169 ± 43 19.1 1.34 0.68 50.3 3.2 

CP high DE pre-gel 351 ± 82 65.4 2.68 1.18 47.3 3.1 

Washed CP high DE pre-gel 115 ± 7.0 57.8 0.75 2.8 79 3.3 

CP high DE post-gel  569 ± 21 154.8 3.35 0.66 19.8 1 

Washed CP high DE post-gel 50 ± 16 32.9 0.69 0.14 20.4 1.3 

 

Mechanical and poroelastic behaviour: effect of pectin degree of methylesterification.  

Similar trends were observed for low and high DE pectins, although the samples containing 

low DE pectin gels showed larger compression stress than high DE pectin samples. This 

could be due to the differences in viscoelasticity and gel strength between the low and high 
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DE Ca
2+

-pectate gels. The elastic modulus G’ of the low DE pectin with 12.5mM CaCl2 was 

475 Pa and tan δ = 0.11; for the same concentration of CaCl2, the high DE pectin gel had a G’ 

of 7.6 Pa and tan δ = 0.22. These values are indicative of gel formation (G" < G') and the 

strength of the gels. High DE pectin led to a weaker gel than the low DE pectin, thus 

contributing less to the load-bearing properties of the cellulose composites due to their 

poroelastic nature. Furthermore, whilst high DE gels were able to completely relax during the 

time of the experiment, the samples containing low DE pectin gels did not relax completely, 

indicated by a residual stress at the end of the relaxation experiment (Figure 5). 

 

Effect of pectin-calcium gels on the diffusion properties of cellulose hydrogels 

Diffusion coefficients calculated from FRAP experiments are presented in Figure 6. As can 

be observed, diffusion depends more on probe size than on type of sample. There were no 

significant differences in the diffusion values of pre- and post-gels. However, the samples 

containing low DE pectin showed lower average diffusion values than the high DE samples, 

in particular for the probe with the smallest size. This could indicate that samples with low 

DE pectin/calcium gel had denser networks than the corresponding high DE samples, due to 

the different fine structure of the pectins and the corresponding gel networks. There is no 

correlation between these diffusion coefficients and the permeability values obtained from 

the poroelastic model, which showed that the pre-gels were more permeable than post-gels 

and both low and high DE samples had similar permeability. The lack of correlation could be 

due to the different length scales investigated; using FRAP, information on 30 µm diameter 

regions is obtained, whereas the poroelastic model used data from the whole experimental 

sample with a diameter of 40 mm and thickness of ca. 1mm. Furthermore, the diffusion 

values from FRAP correspond to 3D movement of the probes in the samples whilst the 

permeability from the poroelastic model is mainly in the radial direction. One can conclude 
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that whilst order of assembly impacts the diffusion properties of the cellulose/pectin/calcium 

composites at large length scales due to heterogeneities, it has no measurable impact at lower 

length scales. However, pectin degree of methylesterification has an effect on the diffusion at 

lower length scales, due to the differences in fine structure and gel network. 

 

Figure 6. Diffusion coefficients of fluorescein isothiocyanate labelled dextran probes, FD 70 

(rH=8.0 ± 0.5 nm) and FD 500 (rH=13.5 ± 1.1), in cellulose hydrogels containing Ca
2+-

pectate 

gels assembled before or after cellulose synthesis. 

 

Conclusions 

It has been demonstrated that Ca
2+

-pectate plays a key role in the load-bearing ability (under 

compression) of simplified plant cell wall models based on cellulose hydrogels. Order of 

polysaccharide assembly, i.e. pectin gel network formation prior to or after cellulose 

synthesis, impacts the resulting mechanical properties, including permeability, due to i) the 
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effects of the pectin-calcium gel on cellulose architecture, at all length scales, during 

cellulose deposition; and ii) microstructural homogeneity of the pectin-calcium gels. Direct 

molecular interaction between pectins and cellulose microfibrils is indicated from small angle 

scattering, but only when pectin is present during cellulose synthesis. The extent of the 

contribution to the mechanical and diffusion properties depends on the pectin degree of 

methylesterification, due to the strength and viscoelasticity of the formed Ca
2+

-pectates. The 

results highlight the importance of the order of assembly of polysaccharides for cellulose 

composite hydrogels. Furthermore, although it should be considered that in plant cell walls 

other polysaccharides (hemicelluloses) are also present, our results provide insights into the 

potential contribution of pectin to cell wall mechanics. 

Supporting information 

Neutron and X-ray scattering length densities for cellulose and pectin. Two dimensional 

SANS patterns for the hydrogel samples soaked in D2O.  Two dimensional scattering pattern 

for the CP low DE pre-gel showing the sector average applied to obtain the intensity in the 

equatorial (black lines) and meridional (red lines) directions. Parameters obtained from the 

SANS fits of the power-law plus core-shell cylinder with polydisperse radius model for the 

pure cellulose and the washed cellulose/pectin hydrogels. 
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