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Abstract Both qualitative and quantitative model learn-

ing frameworks for biochemical systems have been studied

in computational systems biology. In this research, after

introducing two forms of pre-defined component patterns

to represent biochemical models, we propose an integrative

qualitative and quantitative modelling framework for in-

ferring biochemical systems. In the proposed framework,

interactions between reactants in the candidate models for a

target biochemical system are evolved and eventually

identified by the application of a qualitative model learning

approach with an evolution strategy. Kinetic rates of the

models generated from qualitative model learning are then

further optimised by employing a quantitative approach

with simulated annealing. Experimental results indicate

that our proposed integrative framework is feasible to learn

the relationships between biochemical reactants qualita-

tively and to make the model replicate the behaviours of

the target system by optimising the kinetic rates quantita-

tively. Moreover, potential reactants of a target bio-

chemical system can be discovered by hypothesising

complex reactants in the synthetic models. Based on the

biochemical models learned from the proposed framework,

biologists can further perform experimental study in wet

laboratory. In this way, natural biochemical systems can be

better understood.

Keywords Evolutionary algorithms � Heuristic
algorithms � Qualitative model learning � Quantitative
model learning � Systems biology

Introduction

Understanding inherent mechanisms and principles in the

biochemical systems is one of the main tasks when mod-

elling such systems. To effectively investigate a biochemical

system of interest, in silico analysis can be performed to

reveal and formalise the underlying cellular functions and

biochemical processes. Two different but complementary

methods, quantitative and qualitative model learning ap-

proaches [3], can be applied tomodel biochemical systems: a

given cellular system can be described and analysed

mathematically in a quantitative manner until desired bio-

chemical behaviour is replicated in a virtual cellular envi-

ronment, for instance, a web-based environment for kinetic

modelling and dynamic simulation of cellular networks—

WebCell [36]; meanwhile, a biochemical system can be

qualitatively modelled and identified through qualitative

model learning(QML) [49, 52, 53] when only incomplete

knowledge and imperfect data are available. The above facts

motivate us to develop an integrative qualitative and quan-

titative model learning framework, and we expect that by

making use of the advantages of both learning approaches

better learning performance will be achieved to assist wet-

laboratory research.
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In quantitative modelling approaches, a dynamic bio-

chemical system is mathematically represented to model

molecular mechanisms at a quantitative level, and inter-

actions of molecules may be discovered through such

modelling process. In further biochemical analysis and

wet-laboratory experiments, more biochemical assump-

tions may be suggested and verified with the help of such

precise quantitative analysis. In addition, cell–cell inter-

actions can also be studied through quantitative simulation

or system identification [37].

With the recent development of experimental tech-

niques, large omics data have been made available, and this

makes it possible to employ quantitative modelling ap-

proaches to analyse the dynamics of biochemical systems

at the genomic level and address various biochemical is-

sues. For instance, metabolome, fluxome, transcriptome

and/or proteome can all be improved and completed by the

use of quantitative approaches. Moreover, topologies of

biochemical systems can be identified [29, 65] and pa-

rameter values can be numerically determined or estimated

[32, 43].

In qualitative modelling approaches, qualitative infor-

mation extracted from imprecise and incomplete data is

used to model real-world problems, which becomes the

task of qualitative reasoning (QR) [20, 35]. Continuous

aspects of a given dynamic system, for instance, space,

time and quantity, can be represented or inferred auto-

matically in QR. In QR-based research, qualitative values,

such as, high, medium, low, zero, positive and negative,

can be used to describe complicated dynamic systems,

instead of using precise numerical values. Therefore, be-

haviours of target biochemical systems can be predicted

and reasoned qualitatively in silico with the support of QR

[30].

One of the subfields of QR, qualitative differential

equation model learning (QML) [48], involves the con-

struction of qualitative differential equation models of

dynamic systems from observed data and existing knowl-

edge. QML has been well developed in the last two dec-

ades, and examples of QML systems include MISQ [60],

GENMODEL [26], QOPH [15], QSI [10], ILP-QSI [17],

and the most recent QML-Morven [47, 50] as well as its

scalable version, QML-AiNet [51]. QML is a comple-

mentary approach to quantitative system identification [37]

and it works well in reasoning dynamic behaviours of

biochemical systems, especially when only noisy and

sparse experimental data are available. QML can infer

plausible qualitative models for a given target biochemical

system (for instance, in [70] an integrative modelling ap-

proach is studied for stepwise qualitative exploration of

biochemical interactions), and these plausible qualitative

models could be directly examined by biologists or further

refined by quantitative approaches depending on specific

research tasks.

In a biochemical system, behaviours of reactants, in-

cluding the interactions between these reactants, are de-

termined by kinetic laws and concentrations of species. In

the presence of abundant quantitative data and sufficient

knowledge, it is straightforward to employ sophisticated

quantitative modelling approaches and tractable computa-

tional tools to first build quantitative models by presuming

the model structures and then fit the numeric parameters of

these models. However, when available data and knowl-

edge are not enough to assume model structures and per-

form quantitative analysis, it is essential to use qualitative

model learning approaches to first qualitatively infer the

model structure and then analyse biochemical systems at a

qualitative level [47, 63].

In this research, we propose an integrative framework to

explore the biochemical model space at both qualitative

and quantitative levels. More specifically, an evolution

strategy (ES) [5, 62] is employed in the qualitative ap-

proach to perform effective selection and composition of

functional modules and heuristically evolve model struc-

tures towards the target biochemical systems. Then

simulated annealing (SA) [31] is used to quantitatively

optimise model kinetic rate constants obtained from the

qualitative approach. The motivation of employing ES and

SA in our framework is that these two metaheuristics al-

gorithms are suitable for searching qualitative and quanti-

tative model space, respectively, and they have been

proven to be effective in similar problems in our previous

work [66, 67]. For a comprehensive review of employing

ES and SA in biochemical systems identification, the

reader is referred to [68], in which the optimisation of

model structure and kinetic rates was studied by the hybrid

use of ES and SA, respectively. In addition, for a general

review of evolutionary algorithms and related issues on

their applications, the reader is referred to [46]. It is also

worth mentioning that in [22], a co-evolutionary algorithm

is used to infer differential equation models of the target

system from time series data in a reverse engineering

manner.

The rest of this paper is organised as follows. In Sect. 2,

biochemical components and models are briefly described

and how these components work together are also illus-

trated. We introduce the background knowledge about the

quantitative and qualitative modelling approaches in

Sects. 3.2 and 3.1, respectively. In Sect. 4, we present the

integrative quantitative and qualitative modelling frame-

work. Some case studies and simulation results with ana-

lysis are reported in Sect. 5. In Sect. 6, we compare our

system with relevant ones. Finally, Sect. 7 concludes our

research with discussions on future work.
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Representation of Biochemical Models

In this research, we reuse the definitions of biochemical

building blocks (components) and composition of these

components (models), as reported in our previous work

[66, 69], to represent the target biochemical system in the

form of Petri nets [44]. Components are basic building

blocks, and a synthetic model is composed from these

components by following a set of composition rules [66].

Definitions of biochemical components and models as well

as the applications of composition rules are detailed in our

previous work [66, 68]. In this section, a brief introduction

about the components and model composition is given as

follows.

In general, biochemical components can be defined by

Petri nets, which can also be applied to define the two

patterns (binding and unbinding) for instantiating compo-

nents. As shown in Eqs. (1) and (2), the binding and un-

binding patterns are defined for further model learning

tasks.

P1 þ P2 �!
k1

P3 ð1Þ

In Eq. (1), P1 represents a reactant acting as a substrate; P2

denotes a reactant acting as an enzyme; P3 (P3 ¼ P1jP2) is

a complex synthesised from P1 and P2 at a reaction kinetic

rate constant k1, which is for a synthetic process. It should

be noted that in this research we use the symbol ‘j’ joining
the labels of the two reactants to represent a complex.

P3 �!
k2

P�
1 þ P�

2
ð2Þ

In Eq. (2), k2 is a reaction kinetic rate constant for a dis-

association process; Complex P3 is either disassociated to

two reactants P�
1 and P�

2, which form the complex P3 itself

(an inverse process of the binding pattern presented in

Eq. (1), thus P�
1 ¼ P1 and P�

2 ¼ P2), or converted into a

new product ðP�
1 6¼ P1Þ and an enzyme ðP�

2 ¼ P2Þ which is

one of the reactants forming the complex P3 described in

Eq. (1).

We can take the binding pattern for the instantiation of a

component, and in the binding process, two reactants are

combined to form a complex reactant. We can also take the

unbinding pattern for instantiating a component, and in the

unbinding process, a complex reactant is divided into two

reactants. In this way, complicated components consisting

of more than three reactants can be represented by the

composition of components instantiated from these two

patterns. As mentioned before, in this research qualitative

model, learning with ES is used to evolve model structures

generated from these components, and kinetic rate con-

stants associated with the interactions between the reac-

tants in these components are optimised by quantitative

model learning with SA.

We here briefly introduce the formation of components:

given two sets of reactant labels provided by the user: a

set of reactants as species Sspecies and another set of re-

actants as enzymes Senzymes. Each element in Sspecies is

selected in turn to be combined with each element in

Senzymes to produce a complex and a new reactant, based

on the mass-action 1 (MA1) kinetic law [6]. For instance,

species A from Sspecies is combined with enzyme E from

Senzymes to form a complex AjE and a new reactant AP.

The choice of kinetic laws used to describe biochemical

models depends on the pathway that we will study. In

practice, two kinetic laws are often used to describe a

biological pathway: the law of mass-action [24] and

Michaelis–Menten kinetics [41]. Mass-action kinetics

indicate that the rate of a biochemical interaction is pro-

portional to the concentrations of biochemical reactants. A

system of nonlinear ODEs defines the rate of change of

reactants within experimental time. Thus, an enzyme acts

as a catalyst facilitating the reaction in an enzymatic re-

action, which is possible to be investigated by biological

experiments. Based on literature reviews [64], it is rea-

sonable to use the law of mass-action to model the target

biochemical system, which is the RKIP pathway (intro-

duced later in Sect. 5.1). While the law of Michaelis–

Menten assumes that the substrate is in instantaneous

chemical equilibrium with the complex, and this as-

sumption is not suitable for describing the RKIP pathway.

Moreover, the RKIP pathway has been well studied in [13,

21] by using the mass-action law to describe the quanti-

tative relationships between substrates and complex. In

order to follow previous research results and develop new

modelling methods based on the same biochemical path-

way, in this research we also use the mass-action law to

describe a pathway and do not consider Michaelis–Menten

kinetics at this stage. Although the Michaelis–Menten

kinetics are not used in this research, it is possible to use a

hybrid method of employing both Michaelis–Menten and

mass-action laws to study different parts/scales of bio-

chemical systems as in our previous work [49, 52].

However, this is beyond the scope of this research.

A synthetic enzymatic reaction is shown in Eq. (3). In

this equation, the symbol ‘ � ’ indicates that the reaction

is reversible; the symbol ‘!’ represents a non-reversible

reaction; the symbol ‘j’ indicates that a complex reactant is

generated from the two reactants (as described before); and

the letter P after the species label A means a new product

generated from A.

Aþ E � AjE ! APþ E ð3Þ

Therefore, three atomic components can be obtained from

the enzymatic reaction shown in Eq. (3): ‘Aþ E ! AjE’,
‘AjE ! Aþ E’ and ‘AjE ! APþ E’.
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Given a set of reactants, components can be generated

from these reactants and used as modules to construct a

biochemical model. Components of a model represented by

Petri nets are connected by merging the same ‘nodes’

(Places) among these components [66]. Figure 1 shows a

Petri net model for an enzymatic reaction consisting of

three components connected with each other by merging

the same reactants. ‘T1, T2, and T3’ stand for ‘reactions’

(Transitions), whose kinetic rate constants are marked as

‘k1, k2, and k3’ on the places, respectively. The numbers

(for example, 4 and 5) associated with the places represent

the initial concentrations of reactants [68].

Qualitative and Quantitative Model Learning
Approaches

Qualitative Model Learning

Qualitative States

A dynamic system can be described at a qualitative level,

and its important behavioural properties are captured by a

set of qualitative states and possible transitions between

these states [19, 35]. A qualitative state is a complete as-

signment of qualitative values to all variables in the system

and considered as a ‘snapshot’ of the system. The dynamic

system under investigation could potentially demonstrate

such possible qualitative states under specific conditions

and a correct model built for the system should produce

these qualitative states (and only these states if all variables

are known).

Table 1 shows a set of qualitative states derived from a

qualitative model [71]. Each row in this table represents an

individual qualitative state. For each variable, its magni-

tude and rate of change of the current state are illustrated

by the qualitative signs: pos (positive), zer (zero), and neg

(negative). For example, if the qualitative value of a vari-

able A is \zer, pos [ , this means the magnitude of A is

zero and the rate of change is positive, which indicates that

the value of A is increasing.

For the legal transitions between qualitative states,

transition rules (e.g., rules presented in QSIM [35]) are

employed to calculate them. A sequence of qualitative

states forms a qualitative behaviour, and the terminal states

of the qualitative behaviour are often equilibrium ones, in

which all variables remain constant [49].

Qualitative Differential Equations

One of the well-studied formalisms of the qualitative

model used by QR is qualitative differential equations

(QDEs), which have been used by QSIM [33, 35] and

Morven [14, 16].

Ordinary differential equations (ODEs) quantitatively

describe the behaviour of a dynamic system. A QDE model

is the abstraction of a set of ODE models sharing the same

model structure but with varying parameter values. Fig-

ure 2 shows the relationships between the real-world dy-

namic systems, ODE models, and QDE models in terms of

quantitative and qualitative behaviour.

Formally, a qualitative differential equation (QDE) is a

tuple, \V ;Q;C; T [ , each of which is defined in [35] and

briefly described as follows: V is a set of qualitative vari-

ables, each of which is a ‘reasonable’ function of time; Q is

a set of quantity spaces, one for each variable in V ; C is a

set of qualitative constraints applying to the variables in V ,

and each variable in V must appear in some constraints; T

is a set of transitions between qualitative states. In sum-

mary, a QDE is the conjunction of all its qualitative con-

straints, and each constraint links some qualitative

variables.

According to above definitions, qualitative constraints

constitute a QDE, which restricts the generation of possible

qualitative states. In addition, a quantity space is composed

of several qualitative values that could be taken by a

variable. In this research, for the application of ES to

evolve the topologies of biochemical models, we use QDEs

to represent qualitative models in terms of structure, and

for all variables we used the signs quantity space [30],

which is composed of three qualitative values: positive,

zero and negative.

Quantitative Model Learning

Quantitative modelling of biochemical processes has been

intensively used in biochemical research [1, 7, 12, 55, 61].

Preliminary quantitative analysis of biochemical systems

has been very difficult to perform, due to the inherent

complexity of biochemical processes [25, 57]. Biochemical

systems have been modelled by employing Petri nets the-

ory [44], including enzymatic cascades and synergistic

binding of ligands to enzymes [3, 38, 45]. In primary re-

search, the issues of quantitative analysis of metabolic
Fig. 1 A graphical representation of a Petri net model for an

enzymatic reaction consisting of three components
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pathways have been studied by Reddy et al. [58, 59]. Re-

search efforts on applying Petri nets to model biochemical

processes and the description of current challenges of

constructing biochemical pathways by Petri nets are de-

tailed in [4, 11, 39, 56].

In biochemistry, a chemical reaction is a process of con-

verting molecules of reactants known as substrates into

products within a specific time period. Biochemical systems

are composed of interacting molecular species, whose dy-

namics are governed by the corresponding chemical reac-

tions. A biochemical model is fully characterised by the initial

concentration of eachmolecular species and the specifications

of the reactions with their kinetic rate laws. The dynamics of

the molecular species can be described by an ordinary dif-

ferential equation (ODE) as shown below [67]:

dXi

dt
¼
X

j

lij � cj
Ym

k¼1

X
fjk
k

 !
; ð4Þ

where Xi represents one entity of the model, for instance,

the metabolite concentration, protein concentrations, or the

level of gene expression; j represents the biochemical re-

action that affects the dynamics of the species; lij is the

stoichiometric coefficient; cj is the rate constant; fjk stands

for kinetic order; and m denotes the number of reactants

involved in the reactions.

The use of Petri nets in biochemical systems comes as a

natural and intuitive solution, as biochemical reactions are in-

herently bipartite, and Petri nets can describe relations between

biochemical entities [44]: the biochemical reactions and enti-

ties can be mapped onto transitions and places, respectively. A

continuous Petri net can be represented by a system of ODEs

which describes biochemical reactions in models. In this re-

search, we map ODEs from a set of biochemical reactions and

optimise the associated kinetic rate constants quantitatively.

An Integrated and Complementary Biochemical
Model Learning Framework

The Modelling Framework

In this section, we propose an integrated and complemen-

tary qualitative and quantitative biochemical modelling

framework (2QBMF) for modelling biochemical systems,

and this framework can identify the structure and kinetic

rate constants simultaneously.

Figure 3 illustrates the details of the modelling frame-

work. First, initial biochemical model seeds are synthesised

by employing a pair of operators ‘Addition and Subtrac-

tion’ to compose biochemical components from a pre-

specified component library, before we perform model

topological exploration and rate constants optimisation.

Fig. 2 This diagram is a slightly modified version of the one

presented in [34]. The diagram shows that all models are abstractions

of the real-world systems. Qualitative models are related to ordinary

differential equations, but are more expressive of incomplete

knowledge

Table 1 A set of qualitative

states
State ID A AP B BP

1 hzer , posi hpos , negi hpos , negi hpos , negi
2 hpos , posi hpos , posi hzer , posi hpos , negi
3 hpos , zeri hpos , zeri hpos , negi hpos , negi
4 hpos , posi hpos , posi hpos , negi hpos , negi
5 hpos , negi hzer , posi hpos , negi hpos , negi
6 hzer , posi hpos , negi hpos , zeri hpos , negi
7 hpos , zeri hpos , negi hpos , zeri hpos , negi
8 hpos , negi hpos , zeri hpos , zeri hpos , negi
9 hpos , zeri hpos , zeri hpos , zeri hpos , negi
10 hpos , negi hpos , posi hpos , zeri hpos , negi
11 hzer , zeri hzer , zeri hzer , zeri hzer , zeri
12 hpos , posi hpos , zeri hzer , zeri hzer , zeri
13 hpos , posi hpos , zeri hpos , zeri hpos , zeri
14 hpos , posi hpos , negi hpos , posi hpos , zeri
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Qualitative model learning (QML) presented in Sect. 3.1 is

then applied to explore the qualitative model space, that is,

to explore all possible model structures. As the implicit

search space for model structure may be huge, to effec-

tively perform such exploration we use evolution strategy

(ES); once we determine the model structure, quantitative

model learning (QuatML) described in Sect. 3.2 is em-

ployed to optimise the kinetic rate constants, and we use

simulated annealing (SA) to perform such optimisation.

While the model structure is finely tuned by the com-

ponent addition and subtraction operations of ES in an it-

erative manner, qualitative differential equations (QDEs)

converted from the Petri net model are used to describe and

analyse the qualitative states generated by simulating each

modified model. Modification of model structure is ac-

cepted, if the interactions between biochemical reactants in

the model can achieve a high rate of coverage (e.g. 80 %),

which is defined as the percentage of the observed

qualitative states covered by the QDE model.

After the model structure has been explored, kinetic rate

constants associated with the biochemical reactions are

globally optimised by employing ordinary differential

equations (ODEs) in the SA process. The ODEs are per-

formed to mathematically analyse influence of kinetic rate

constants on the reactant concentration. If the target rate

constants are achieved at a high rate coverage (e.g. 80 %),

the optimisation of the reaction rates is accepted.

In this way, the metaheuristic algorithms ES and SA are

used to carry out qualitative analysis and quantitative es-

timation in a complementary manner. The heuristic evo-

lutionary searching mechanism of ES supports the model

structure exploration, and the global search strategy of SA

helps the optimisation of kinetic rate constants to drive the

model behaviours approaching the target ones.

Qualitative Model Structure Evolution

In the qualitative modelling approach, each individual

evolved by ES is a Petri net model. At each generation of

the evolutionary process, the topology of the model is

evolved through the application of genetic addition and

subtraction operators. An evolutionary algorithm (l?k)-
ES [5] is employed to iteratively evolve model structure at

a qualitative level. In order to test the evolutionary

qualitative modelling process in a simplest scenario, we

choose a simple (1 ? 1)-ES to generate offspring models.

Further, advanced (l?k)-ES will be performed and in-

vestigated more thoroughly in the future.

Algorithm 1 ES based qualitative modelling approach to
evolve biochemical systems
Require: A set of model seeds Mi (i=1,2,...,N) for a target bio-

chemical system; given qualitative states QST .
Ensure: Developed models of the target system based on qualita-

tive information of evolved Mi .
1: while Maximum number of ES generations is not achieved do
2: Mi ← Mi , by adding a component C to Mi ; or by subtract-

ing a component C from Mi ;
Mi and produce

QSMi ;
4: Perform calculation of the fitness function F(QST , QSMi );
5: if F(QST , QSMi ) = 1 or 80% of the interactions are obtained

then

rithm 2 to quantitatively optimize QSMi ;
7: else

3: Apply QDEs to qualitatively simulate

6: Call SA based quantitative modelling approach in Algo-

8: Reject Mi and reuse Mi in the next ES generation;
9: end if
10: end while
11: Return a set of qualitatively evolved models for the target bio-

chemical system.

The pseudo-code of employing ES to perform qualita-

tive model learning of biochemical systems is shown in

Algorithm 1. A set of model seeds Mi is prepared for

structurally approaching the target biochemical system.

Begin

Initial
Model
Seeds

Optimize
Topologies

Optimize
Kinetic Rate
Constants

Topologies
Covered at 80% ?

Kinetic Rate
Constants Covered

at 80% ?

No

End

Yes

No

Add/
Subtract

Component

Components
Library

Qualitative
Method
(QDE)

Quantitative
Method
(ODE)

Evolution
Strategy

Simulated
Annealing

Yes

Fig. 3 A complementary qualitative and quantitative-based bio-

chemical modelling framework (2QBMF)
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These model seeds can be obtained from literature or

knowledge of wet-laboratory experiments. In general, a

composed model Mi
0 can be evolved by applying addition

or subtraction operators [66] to Mi. In this research, the

addition and subtraction operators are applied by a fixed

number of generations, which is adopted based on our

previous experience in quantitative simulations [67].

Model Mi
0 is simulated with JMorven [8], a qualitative

simulation engine. JMorven will generate a set of qualita-

tive states QS for comparison with QST in a fitness function

F. If the fitness value is equal to 1 (the range of fitness

value is from 0 to 1, and the bigger the better) or 80 % of

target interactions are obtained (the interactions between

reactants in a model indicate the structure of the model), an

SA-based quantitative modelling approach in Algorithm 2

will be used to optimise the kinetic rate constants. Other-

wise, the mutated Mi
0 is rejected and the mutation is per-

formed in the next generation. The qualitative model

learning process is terminated when the ES stopping con-

ditions are satisfied. At the end of the modelling process, a

set of final best qualitative models will be obtained with

explored topologies by the qualitative analysis.

Note that, one of the predefined conditions, obtaining 80 %

of target interactions, is not triggered during the qualitative

optimisation process in all simulations performed in this re-

search. The number 80 %was inspired by the Pareto Principle

[54] (or called ‘80–20 rule’)which states that roughly 80 %of

the effects come from 20 % of the causes for many events.

Thus, in our research, it is possible to allow potential good

qualitative models to be preserved during the evolutionary

process by considering a small group of mutated models with

80 % interactions generated. But after checking our simula-

tion results, we found that the condition of generating 80 %

interactions was not hold and switching from Algorithm 1 to

Algorithm 2 was always not triggered by this condition. The

reason was that fitness values of models under constructions

always first reach the value ’1’ before 80 % interactions are

generated. However, with an aim to obtain good qualitative

models from simulations in further research, we still keep the

condition of 80 % interactions as one of criteria for switching

from qualitative modelling in Algorithm 1 to quantitative

modelling in Algorithm 2.

Quantitative Model Parameter Optimisation

In the quantitative modelling approach, ODEs are used to

mathematically describe biochemical models and pa-

rameters of the models are investigated. In this research,

kinetic rate values are parameters to be optimised by SA.

SA is a heuristic algorithm suitable for globally searching

optimal solutions in a very large solution space, and it can

avoid getting trapped into local optima. As mentioned in

Sect. 3.1.2, a set of ODEs sharing the same structure can be

represented by a QDE model; thus, a QDE model obtained

from qualitative model learning can be quantitatively op-

timised to obtain corresponding ODEs. This is achieved by

using the QDE model as the skeleton of an ODE model and

estimating the parameter values of this ODE model.

Algorithm 2 Quantitative modelling approach for optimiza-
tion of biochemical systems based on SA
Require: A set of models Mi (i=1,2,...,N) with corresponding ini-

tial kinetic rate values associated with biochemical interactions,
iteration number I terNum, cooling rate α, system temperature
T and minimum stop temperature TMin .

Ensure: Optimized kinetic rate constants within the Mi .
1: while T > TMin do
2: while I terNum! = 0 do

Mi by Gaussian distribution
N(μ, σ );

tated rate values in Mi ;
Mi based on the Metropolis algorithm;

6: end while
I terNum;

3: Mutate kinetic rate values of

4: Apply ODEs to quantitatively calculate and evaluate mu-

5: Accept

7: Reset
8: Lower T by α;
9: end while
10: Return Mi with optimized kinetic rate constants.

Algorithm 2 shows the pseudo-code of quantitative op-

timisation of kinetic rates in models Mi. Models Mi con-

structed from previous qualitative model learning stage

have been evolved qualitatively to obtain their proper

model structures, and these models are to be quantitatively

investigated, because the values of the associated rates are

essential to obtain expected quantitative behaviours. The

parameter t is the current SA system temperature ðt ¼ TÞ,
and IterNum is the number of iterations at each system

temperature.

Models Mi with optimised rate values are accepted or

rejected according to a classical Metropolis mechanism

[40]. Accepted Mi are preserved as new start points for the

next run of model optimisation. Models Mi with different

sets of rate values and structures are optimised heuristically

at different SA system temperatures by a cooling rate a,
and the whole process will stop when system temperature

reaches the minimum temperature TMin.

Note that, due to the probabilistic and random nature of

SA [2], a model with a poor estimated fitness value could

be generated and accepted. Thus, corresponding bio-

chemical reaction rates associated with different topologies

of the models could result in the acceptance of non-opti-

mum models during the model learning process.

Qualitative and Quantitative Models Evaluation

Models are simulated and evaluated after qualitative

structural mutation and quantitative optimisation of rate
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values. There are two different evaluation methods, one for

qualitative and another for quantitative model learning.

Qualitative Fitness Function

As mentioned before, qualitative models explored by ES

are simulated with JMorven [8]. JMorven can produce a set

of qualitative states given a qualitative model. The given

target qualitative states of a biochemical system are com-

pared with the states generated from the qualitative model.

The number of matched qualitative states between the

target system and a synthetic model is recorded and con-

sidered as part of the fitness evaluation.

A qualitative state for the model evaluation purpose is

an assignment of N variables which appear in both the

target biochemical system and explored model. There

could be M qualitative states, and a vector is used to record

each of these M qualitative states. In this vector, each

element is the assignment of one variable. To evaluate a

composed model, the following two sets will be compared

element by element: one is the set of qualitative states

generated by the composed model, and another is the given

set of states demonstrated by the target system. In this way,

a fitness value of a qualitative model is calculated by

considering the overlapping part of the above two sets.

Figure 4 shows the comparison between a synthetic

model and a target biochemical system in terms of

qualitative states. A synthetic model produces a set of

qualitative states QSG, and a set of given target qualitative

states QST is compared with QSG to calculate the coverage

of qualitative states in f1. Another comparison is performed

by comparing QSG with the set of all possible states QSC,

in which f2 is the rate of matched qualitative states pro-

duced by the model under estimation. Therefore, qualita-

tive evaluation of a composed model can be described by

jointly considering f1 and f2 in a fitness function F. Details

of the calculation of f1, f2 and F are shown in Eqs. (5)–(7)

[71].

f1 ¼
j QSG \ QST j

j QST j ð5Þ

f2 ¼
j QSG \ QSC j

j QSC j ð6Þ

F ¼1� 1

1þ f1 þ 1
1þf2

ð7Þ

In the above Eqs. (5)–(7), ‘j�j’ denotes the number of states

in the set, j QSG \ QSC j indicates the set of overlapping

states in both QSG and QSC. Two qualitative states are the

same if their assignments of all variables are the same.

The value of f1 ranges from 0 (worst) to 1 (best), be-

cause the more matched qualitative states between QSG and

QST , the bigger the value of f1. The value of f2 ranges from

0 (best) to 1 (worse), as the less matched spurious

qualitative states between QSG and QSC, the better the

quality of the generated model. A fitness function F is

summarised by standardising f1 and f2, and the value of F

ranges from 0 (worst) to 1 (best).

Note that there could be different synthetic reactants in a

composed model during the evolutionary model learning

process, because of the use of genetic addition and sub-

traction operators. In this research, we specify the reactants

to be compared during the model evaluation process. Thus,

we discard a composed model of which all reactants are not

in the vector of variables for comparison with the target

system.

Quantitative Fitness Function

Quantitative behaviours of a model are compared with the

target ones, which are represented in the form of time

series data for the concentrations of species, e.g., enzymes,

proteins, and complexes. The behaviours of the species in

the target system can be obtained from observations of a

biochemical system from the wet laboratory and corre-

sponding computational model in dry laboratory. As

mentioned before, the optimisation of kinetic rates will

result in the model behaviours approaching the target ones.

A set of reference dataMT is used for the target system, and

there are N generated time series XT ¼ ðX1;X2; . . .;XNÞ
which represent the behaviours ofN species, andN � 1. There

are P data points in each time series Xi ¼ ðx1i ; x2i ; . . .; xPi Þ
T
,

i ¼ 1; . . .;N. There areM time series XG ¼ ðX̂1; X̂2; . . .; X̂MÞ
which describes the behaviours ofM species in a constructed

model MG, with P data points in each time series

X̂j ¼ ðx̂1j ; x̂2j ; . . .; x̂Pj Þ
T
, j ¼ 1; :::;M. Intersection betweenMT

and MG is defined by XC ¼ XT \ XG ¼ ðX1;X2; . . .;XnÞ,
1� n�N. The difference between the behaviours ofMT and

MG is calculated by averaging the difference of behaviours of

each species inXC by a paired comparison of theP data points.
Fig. 4 Comparison between generated qualitative states from a

synthetic model and target states in a given biochemical system

644 Cogn Comput (2015) 7:637–651

123



As shown in Eq. (8), the difference of behaviours for

one species Xk in XC is measured by the Euclidean dis-

tance, where g is the total number of compared substrates

in XC [66].

dMT ;MG
ðXkÞ ¼

1

g

Xg

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XP

t¼1

ðxtk � x̂tkÞ
2

vuut ð8Þ

Note that, g ¼ n if the compared substrates are from the

intersection XC, (XC ¼ XT \ XG, jXCj ¼ n, 1� n�N), and

g ¼ n0 if the compared substrates are from a specific X0
C,

(X0
C � XC, jX0

Cj ¼ n0,1� n0 � n). In this research, quanti-

tative modelling is a minimisation problem; therefore, the

smaller the fitness value, the better the generated model.

Simulation and Analysis

In order to test the effectiveness of our proposed integrative

modelling framework, we use a real-world biochemical

system, the ‘Ras/Raf-1/MEK/ERK’ signalling pathway

[72], which is called ‘The RKIP pathway’ in this research

for ease of description. In further research, there will be

more key biochemical systems to be used as proof-of-

concept examples. Details of the RKIP pathway structure

are retrieved from literature as well as experiments, and

corresponding qualitative states are abstracted from quan-

titative values, which are obtained from a simulator Snoopy

[27].

We firstly test the feasibility of our learning framework

on a small scale: we specify a small number of generations

and populations and run experiments with a computer

equipped with Intel Core 2 Duo CPU (2.4 GHz) and 4 GB

memory; the total number of generations in ES is 100; the

number of individual models as model seeds is 20; and in

current research, each individual will be mutated definitely

without any application of a probability. Thus, individual

model is under construction by involving two operators

‘addition’ and ‘subtraction’: addition of one component is

performed at each generation, and subtraction of one

component is carried out at every two generations which

allows model structures to be mutated quickly, according to

our previous experience in quantitative simulation [67];

each model seed is an atomic component randomly se-

lected from the component library [66] and applied to the

initial population. Various parameter settings of ES and SA

(for instance, numbers of generations applying subtraction,

addition and crossover in ES; initial temperatures, cooling

rates and iteration numbers in SA) have been tested indi-

vidually throughout the experiments. It appeared that some

modelling issues arose as follows on a small scale: if ap-

plying the subtraction operator to mutate models more than

every five generations, the sizes of model structures would

be out of control. If the number of evolutionary generations

is more than 100, the simulation process would take a

longer time to complete due to the high cost of qualitative

and quantitative simulations. If the initial temperature is set

too high (e.g. [ 100) and the iteration number is [ 50 in

SA, the convergence of model fitness function would be

very slow. Therefore, parameter settings of ES and SA in

this research are designed according to performance con-

siderations and empirical selection. A comprehensive study

of ES and SA parameter settings will be investigated for

their effects on a large scale by employing the high-per-

formance computing (HPC) environment in further re-

search. In this way, simulation and analysis on a large scale

would present an overall influence of different algorithm

parameter settings on the model learning process.

The RKIP Pathway

Signalling pathways play a pivotal role in many key cel-

lular processes [18]. The abnormality of cell signalling can

cause the uncontrollable division of cells, which may lead

to cancer. The RKIP pathway is one of the most important

and intensively studied signalling pathways, transfers the

mitogenic signals from the cell membrane to the nucleus

[72]. It is de-regulated in various diseases, ranging from

cancer to immunological, inflammatory and degenerative

syndromes, and thus represents an important drug target.

Ras is activated by an external stimulus, via one of many

growth factor receptors; it then binds to and activates Raf-1

to become Raf-1*, or activated Raf, which in turn activates

MAPK/ERK Kinase (MEK) which in turn activates Ex-

tracellular signal Regulated Kinase (ERK). This cascade

(Raf-1 ! Raf-1* ! MEK ! ERK) of protein interaction

Fig. 5 A graphical representation of the ERK signalling pathway

regulated by RKIP. Figure is from [21]
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controls cell differentiation with the effect being dependent

upon the activity of ERK. RKIP inhibits the activation of

Raf-1 by binding to it, disrupting the interaction between

Raf-1 and MEK, thus playing a part in regulating the ac-

tivity of the ERK pathway.

With the aim of understanding the role of reactant RKIP

in the biochemical pathway, many computational models

have been developed and ultimately suggest new therapies

[9, 13]. In this research, the RKIP pathway is used to test

the proposed modelling framework. Detailed biological

description of the RKIP pathway can be found in [13], and

a graphical representation of the RKIP pathway in Petri

nets from [21] is shown in Fig. 5.

Analysis of Explored Components

Qualitative model learning focuses on the exploration of

components in candidate biochemical models. During the

model structure learning process, instantiated components

based on given patterns are added into model seeds and

components are subtracted from the models. Thus, statis-

tical analysis of the frequency of explored components is

important for obtaining information about essential bio-

chemical interactions, the problem of which is very diffi-

cult to be addressed in wet laboratory. Moreover, structures

of generated models may vary from the target biochemical

systems because of the component composition. Regarding

the aims of generating interest reactants and hidden com-

plexes associated with the biochemical reactions, it is also

helpful to generate synthetic reactants involved in the

biochemical models, which can be presented to biologists

for further experimental examination.

Table 2 shows the top 11 frequently explored compo-

nents in the qualitatively constructed models. Compared to

the structure of the target RKIP pathway, most of these

explored components do not exist in the target RKIP

pathway:

• Two explored components are in the target RKIP

pathway. NO. 1 ‘RKIPþ Raf1 ! RKIPjRaf1’ and NO.
4 ‘ERK þMEKPP ! ERKjMEKPP’ components exist

in the target RKIP pathway, which means our ES-based

qualitative model learning can explore biochemical

reactions correctly.

• Other explored components are potential/alternative

biochemical reactions in the target RKIP pathway.

Most of learned components with high frequency

(appearance) are obtained from the analysis of simula-

tion results. After comparing synthetic reactants in-

volved in these components with the target pathway, we

can find that alternative biochemical interactions may

have influence on the consumption and accumulation of

the species concentrations. Thus, this may interest

biologists, who can further examine these alternative

interactions in wet laboratory.

It is pointed out that functions of these synthetic reactants

can be analysed by synthetic biology techniques, which an

aim to design new biochemical functionalities for specific

tasks in real-world applications.

Approximating Species Behaviours

Biochemical characteristics of constructed model are de-

scribed by the changes in species concentrations, which are

determined by the biochemical reactions and associated ki-

netic rates. Quantitative behaviours of the model are repre-

sented by time series data, which is from the process of kinetic

rates optimisation by SA. Thus, results of kinetic rate opti-

misation can be examined by comparing the species be-

haviours between the learned and targetmodels quantitatively.

Figure 6 presents the comparison between the be-

haviours of eight target species in one of the best learned

models and those in the target RKIP pathway. From a bi-

ologist’s point of view, the ‘shapes’ of species behaviours

meaning the qualitative change of species concentrations in

Table 2 Frequency of

generated components in

models

NO. Reactants and reactions Frequency Target reactions

1 RKIP?Raf1 ! RKIPjRaf1 405 Yes

2 MEKPP?RKIP ! MEKPPjRKIP 407 No

3 RKIPPjRaf1 ! RKIPPP?Raf1 415 No

4 ERK?MEKPP ! ERKjMEKPP 429 Yes

5 ERKjMEKPP ! ERKP?MEKPP 429 No

6 MEKPPjRKIPP ! RKIPPP?MEKPP 433 No

7 RKIP?RP ! RKIPjRP 469 No

8 MEKPPjRKIP ! RKIPP?MEKPP 471 No

9 ERKPPjMEKPP ! ERKPP?MEKPP 483 No

10 MEKPP?RKIPP ! MEKPPjRKIPP 639 No

11 ERKPPjMEKPP ! ERKPPP?MEKPP 761 No
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experiments are more important than the exact numerical

values of species concentrations while performing ex-

periments. Thus, Fig. 6 shows that the behaviours of the

learned model qualitatively agrees those demonstrated by

the target pathway. This indicates that our proposed model

learning framework can effectively optimise the kinetic

rates associated with biochemical reactions, which in turn

drive the species behaviours of the synthetic models to

approach the target species behaviours in an approximate

manner.
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In future study, when performing quantitative optimi-

sations of associated kinetic rate values on a large scale,

dissimilarities of these molecular species behaviours could

be further reduced by increasing the number of obtained

reactants and interactions between these reactants. Another

way of driving the shapes of molecular species behaviours

is to generate appropriate interactions between target

molecular species and hidden complex in the evolved

models at optimised kinetic rate values.

Comparison with Relevant Systems

There are a number of biochemical modelling frameworks

which consider both qualitative and quantitative perspectives.

For instance, Guerriero has used the gp130/JAK/STAT

signalling pathway as a case study for modelling and per-

forms analysis using the Bio-PEPA process algebra in [23].

In that work, the PRISM model-checker [28] was used to

verify a number of qualitative properties of a model gen-

erated by the Bio-PEPA Workbench. The qualitative

properties of a PRISM model include deadlock states,

species invariants, reachability, reversibility and liveness.

These properties are intended to be consistency checks on

the model, which allow the presence of possible human

errors to be checked in the modelling process and the

model can be guaranteed to behave as expected. Then, the

PRISM model-checker was used to perform quantitative

analysis: state reward-based properties were considered to

observe the time series for some of the quantitative species

of the system; additional (semi-)quantitative measures

were also defined for further quantitative computation.

Milazzo [42] developed a formalism for the description

of biological systems, called Calculus of Looping Se-

quences (CLS), based on term rewriting. Some typical

features of process calculi for concurrency were included

in CLS. Formalisms were introduced for the description of

biological systems and formal tools were provided for the

verification of properties of biological systems. Qualitative

aspects of biological systems (structure and presence/ab-

sence of certain molecules) were also considered, con-

cluding that it is only possible to verify qualitative

properties such as the reachability of particular states or

causality relationships between biological events. More-

over, a stochastic extension of CLS (Stochastic CLS) was

developed, in which quantitative aspects of biological

systems such as time and probabilities were taken into

account.

However, the above methods did not suggest how to

apply both quantitative and qualitative methods and

their integration to optimise the candidate models in

terms of their structure and kinetic rates. Our learning

framework focuses on the optimisation of structure and

kinetic rates within the same framework, and we em-

ploy Petri nets to represent models and QML to infer

and verify qualitative models. These features make our

approach distinguish from the above-mentioned

approaches.

Finally, it is worthwhile to investigate the application of

other evolutionary algorithms and soft computing tech-

niques in our integrative learning framework. Therefore, it

will be interesting to compare the performance of ES and

SA with that of other evolutionary algorithms and soft

computing techniques when they are applied to our learn-

ing framework. In future research, we plan to employ

classical bio-inspired algorithms, for instance, the genetic

algorithm (GA) and ant colony optimisation (ACO) algo-

rithm, in our learning framework to investigate whether

these algorithms are suitable for our learning tasks or could

improve the overall learning performance.

Conclusions

The lack of biochemical knowledge and the limitation of

experimental techniques are reasons that studying bio-

chemical systems in wet laboratory is a time-consuming

and expensive task. Modelling biochemical systems in

silico helps the investigation of biochemical systems in

nature. Thus, it is important and interesting for life scien-

tists to use alternative routes to study biochemical systems.

Existing modelling approaches are either qualitative when

there are only sparse, noisy data and incomplete knowledge

available, or quantitative when there are sufficient reliable

quantitative data. However, in many circumstances, the

model structure for the underlying system and associated

reactants may not be well identified due to the problem

nature, the lack of data and knowledge, and technical

limitations. Therefore, there is a need to perform model

identification at both qualitative and quantitative levels,

that is, qualitatively explore the model structure space (the

topology of a model) and quantitatively optimise the pa-

rameters of the target biochemical systems in an integrative

manner.

In this research, we show how the identification of

biochemical systems can be performed and evolved in an

integrative manner by reusing, composing, and evolving

biochemical modules qualitatively and by mutating kinetic

rates quantitatively. The main issues of the integrative

qualitative and quantitative model learning are addressed in

this research: firstly, interactions between reactants (in-

cluding potential reactants to be discovered) are learned by

the qualitative model learning approach with an evolu-

tionary algorithm; secondly, kinetic rates in a generated

biochemical model are quantitatively optimised so that

behaviours of the target biochemical systems are
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reproduced in synthetic models. Experimental results have

shown that our proposed integrative qualitative and quan-

titative model learning framework is feasible and effective

in the presence of incomplete knowledge and qualitative

data. We point out that our model learning framework can

be applied in both the context of computational systems

biology for biochemical system identification and synthetic

biology for the modular design of desired biochemical

systems.

In future research, a high-performance computing envi-

ronment will be used to improve the learning performance of

our framework. By performing parallelised construction of

biochemical models, for instance, models for metabolic or

signalling pathways participated by some key species, much

more biochemical meaningful models can be obtained and

further investigated by biologists in wet laboratory. Fur-

thermore, after generating a large number of biochemical

models, some biochemical interaction patterns can be sta-

tistically analysed and summarised for later reuse asmodules

for piece-wise model composing [68]. Another interesting

research direction is to investigate the effectiveness of more

established and state-of-the-art heuristic algorithms, espe-

cially evolutionary algorithms, when they are applied to our

integrative qualitative and quantitative system identification

tasks. Finally, we expect that our learning framework can be

implemented as a user interactive program for biologists so

that they can make use of the program to facilitate ex-

periments and generate feedbacks.
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