33 research outputs found

    Traumatic Stress Interacts With Bipolar Disorder Genetic Risk to Increase Risk for Suicide Attempts

    Get PDF
    Objective Bipolar disorder (BD) is one of the most heritable psychiatric conditions and is associated with high suicide risk. To explore the reasons for this link, this study examined the interaction between traumatic stress and BD polygenic risk score in relation to suicidal ideation, suicide attempt, and nonsuicidal self-injury (NSSI) in adolescent and young adult offspring and relatives of persons with BD (BD-relatives) compared with adolescent and young adult offspring of individuals without psychiatric disorders (controls). Method Data were collected from 4 sites in the United States and 1 site in Australia from 2006 through 2012. Generalized estimating equation models were used to compare rates of ideation, attempts, and NSSI between BD-relatives (n = 307) and controls (n = 166) and to determine the contribution of demographic factors, traumatic stress exposure, lifetime mood or substance (alcohol/drug) use disorders, and BD polygenic risk score. Results After adjusting for demographic characteristics and mood and substance use disorders, BD-relatives were at increased risk for suicidal ideation and attempts but not for NSSI. Independent of BD-relative versus control status, demographic factors, or mood and substance use disorders, exposure to trauma within the past year (including bullying, sexual abuse, and domestic violence) was associated with suicide attempts (p = .014), and BD polygenic risk score was marginally associated with attempts (p = .061). Importantly, the interaction between BD polygenic risk score and traumatic event exposures was significantly associated with attempts, independent of demographics, relative versus control status, and mood and substance use disorders (p = .041). Conclusion BD-relatives are at increased risk for suicide attempts and ideation, especially if they are exposed to trauma and have evidence of increased genetic vulnerability

    Histone modification signature at myeloperoxidase and proteinase 3 in patients with anti-neutrophil cytoplasmic autoantibody-associated vasculitis

    Get PDF
    Abstract Background Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease characterized by destructive vascular inflammation. Two prominent ANCA autoantigens are myeloperoxidase (MPO) and proteinase 3 (PR3), and transcription of MPO and PRTN3, the genes encoding the autoantigens, is associated with disease activity. We investigated whether patients with AAV have alterations in histone modifications, particularly those associated with transcriptional activation, at MPO and PRTN3. Results We identified a network of genes regulating histone modifications that were differentially expressed in AAV patients compared to healthy controls. We focused on four genes (EHMT1 and EHMT2, ING4, and MSL1) and found their expression correlated with expression of MPO and PRTN3. Methylation of histone H3K9, catalyzed by EHMT1 and EHMT2 and associated with gene silencing, was most depleted at MPO and PRTN3 in patients with active disease and the highest MPO and PRTN3 expression. Acetylation of histone H4K16, modified by complexes containing ING4 and MSL1 and associated with gene activation, was most enriched at MPO and PRTN3 in patients with active disease and the highest MPO and PRTN3 expression. Methylation at H3K4, a mark of transcriptional activation, was enriched at MPO and PRTN3 in patients and healthy controls. Conclusions MPO and PRTN3 in neutrophils of AAV patients with active disease have a distinct pattern of histone modifications, which implicates epigenetic mechanisms in regulating expression of autoantigen genes and suggests that the epigenome may be involved in AAV pathogenesis

    Research Reports Andean Past 6

    Get PDF

    The Human Phenotype Ontology in 2024: phenotypes around the world.

    Get PDF
    The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs

    Discovery And Replication Of Cerebral Blood Flow Differences In Major Depressive Disorder

    Get PDF
    Major depressive disorder (MDD) is a serious, heterogeneous disorder accompanied by brain-related changes, many of which are still to be discovered or refined. Arterial spin labeling (ASL) is a neuroimaging technique used to measure cerebral blood flow (CBF; perfusion) to understand brain function and detect differences among groups. CBF differences have been detected in MDD, and may reveal biosignatures of disease-state. The current work aimed to discover and replicate differences in CBF between MDD participants and healthy controls (HC) as part of the EMBARC study. Participants underwent neuroimaging at baseline, prior to starting study medication, to investigate biosignatures in MDD. Relative CBF (rCBF) was calculated and compared between 106 MDD and 36 HC EMBARC participants (whole-brain Discovery); and 58 MDD EMBARC participants and 58 HC from the DLBS study (region-of-interest Replication). Both analyses revealed reduced rCBF in the right parahippocampus, thalamus, fusiform and middle temporal gyri, as well as the left and right insula, for those with MDD relative to HC. Both samples also revealed increased rCBF in MDD relative to HC in both the left and right inferior parietal lobule, including the supramarginal and angular gyri. Cingulate and prefrontal regions did not fully replicate. Lastly, significant associations were detected between rCBF in replicated regions and clinical measures of MDD chronicity. These results (1) provide reliable evidence for ASL in detecting differences in perfusion for multiple brain regions thought to be important in MDD, and (2) highlight the potential role of using perfusion as a biosignature of MDD

    Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes

    Get PDF
    publisher: Elsevier articletitle: Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes journaltitle: Cell articlelink: https://doi.org/10.1016/j.cell.2018.05.046 content_type: article copyright: © 2018 Elsevier Inc

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore