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Abstract
This study aimed to identify biomarkers of major depressive disorder (MDD), by relating

neuroimage-derived measures to binary (MDD/control), ordinal (severe MDD/mild MDD/control),

or continuous (depression severity) outcomes. To address MDD heterogeneity, factors (severity of

psychic depression, motivation, anxiety, psychosis, and sleep disturbance) were also used as out-

comes. A multisite, multimodal imaging (diffusion MRI [dMRI] and structural MRI [sMRI]) cohort

(52 controls and 147 MDD patients) and several modeling techniques—penalized logistic regres-

sion, random forest, and support vector machine (SVM)—were used. An additional cohort (25 con-

trols and 83 MDD patients) was used for validation. The optimally performing classifier (SVM) had

a 26.0% misclassification rate (binary), 52.2 � 1.69% accuracy (ordinal) and r = .36 correlation

coefficient (p < .001, continuous). Using SVM, R2 values for prediction of any MDD factors were

<10%. Binary classification in the external data set resulted in 87.95% sensitivity and 32.00%

specificity. Though observed classification rates are too low for clinical utility, four image-based

features contributed to accuracy across all models and analyses—two dMRI-based measures
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Award Numbers: UL1 TR000040 (average fractional anisotropy in the right cuneus and left insula) and two sMRI-based measures

(asymmetry in the volume of the pars triangularis and the cerebellum) and may serve as a priori

regions for future analyses. The poor accuracy of classification and predictive results found here

reflects current equivocal findings and sheds light on challenges of using these modalities for

MDD biomarker identification. Further, this study suggests a paradigm (e.g., multiple classifier

evaluation with external validation) for future studies to avoid nongeneralizable results.

KEYWORDS

diffusion MRI, magnetic resonance imaging, major depressive disorder, structural MRI, support

vector machine

1 | INTRODUCTION

Major depressive disorder (MDD) is a common and debilitating dis-

ease. Characterized by recurrent feelings of sadness, hopelessness,

and inability to feel pleasure, 16.6% of the U.S. population (Kessler,

Berglund, et al., 2005) and 350 million people worldwide (Kessler,

Chiu, Demler, Merikangas, & Walters, 2005; World Health Organiza-

tion, 2012) suffer from MDD, up to 15% of whom will eventually die

by suicide (Palucha & Pilc, 2007). Further, MDD is a growing problem.

Originally predicted by World Health Organization to be the second

leading cause of disability worldwide by 2020 (Murray & Lopez,

1996), MDD fulfilled this prediction in 2013 (Global Burden of Dis-

ease Study 2013 Collaborators, 2015).

Due to the worldwide impact of MDD, it is important to gain a

greater understanding of the illness. Despite decades of inquiry, how-

ever, there are currently no objective MDD biomarkers (Mossner

et al., 2007). A biomarker is a characteristic that can be objectively

measured and used as an indicator of either normal or pathogenic pro-

cesses (Singh & Rose, 2009). As pointed out by Peterson & Weissman

2011, a biomarker for MDD could aid in diagnosis, the search for

genetic and environmental causes, predicting course, identifying those

at increased risk, and developing the next generation of treatments

(Peterson & Weissman, 2011). As such, a biomarker could help reduce

the morbidity and mortality of MDD, as it has in other areas of medi-

cine (e.g., breast cancer, macular degeneration, and myocardial infarc-

tion) (Gonzalez de Castro, Clarke, Al-Lazikani, & Workman, 2013;

Mihaly et al., 2013; Newman et al., 2012; Ziegler, Koch, Krockenber-

ger, & Grosshennig, 2012). Neuroimaging techniques, such as struc-

tural and diffusion-weighted magnetic resonance imaging (MRI) may

be able to provide such a biomarker for MDD, and numerous studies

have evaluated this possibility (Aizenstein, Khalaf, Walker, &

Andreescu, 2014; M. L. Phillips, 2012).

From structural MRI (sMRI), both regional volumes and cortical

thickness (i.e., the distance between the gray matter/white matter

surface and the pial surface) can be estimated. When comparing

depressed subjects to healthy volunteers, some studies report wide-

spread volumetric differences in cortical gray matter regions (Grieve,

Korgaonkar, Koslow, Gordon, & Williams, 2013; Guo et al., 2014;

Takahashi et al., 2010; van Tol et al., 2010) such as smaller gyri of the

caudal middle frontal and medial orbitofrontal cortices (Han et al.,

2014; Qiu, Huang, et al., 2014), and smaller volume in subcortical

regions, such as the amygdala and hippocampus (Amico et al., 2011;

Eker & Gonul, 2010; Huang et al., 2013; Jaworska, MacMaster, Yang,

et al., 2014; Kupfer, Frank, & Phillips, 2012; Whittle et al., 2014) in

MDD patients. Smaller volumes of the hippocampus, basal ganglia,

orbitofrontal cortex, and prefrontal cortex are also frequently

observed in MDD patients (Lorenzetti, Allen, Fornito, & Yucel, 2009).

However, findings remain highly variable in terms of which brain

regions show abnormalities and the degree to which they are affected

across studies (Han et al., 2014; Shizukuishi, Abe, & Aoki, 2013). Simi-

larly, decreased (Mackin et al., 2013; Peterson et al., 2009; Tu et al.,

2012), increased (Qiu, Lui, et al., 2014; Reynolds et al., 2014), or bidi-

rectional (Fallucca et al., 2011; Peterson et al., 2009; Tu et al., 2012)

differences in cortical thickness have been reported in MDD. Regions

found to have cortical thinning in the largest study to date (~1,900

adult MDD subjects), such as the medial orbitofrontal cortex (although

with effect sizes likely too small for clinical meaning; Schmaal et al.,

2016), have been previously reported to be thicker (Qiu, Lui, et al.,

2014) or the same (Perlman et al., 2017) in other studies of depressed

individuals.

Diffusion MRI (dMRI) is used to evaluate orientation and diffusion

characteristics of white matter and, by inference, white matter micro-

structure (Murphy & Frodl, 2011). Fractional anisotropy (FA), is a com-

mon measure used in dMRI to determine integrity of white matter

fibers by estimating the direction of movement of water molecules

(Liao et al., 2013; Murphy & Frodl, 2011). Characteristics of healthy

white matter include parallel organization of white matter fibers and

myelination, which leads to restricted movement of water lateral to

the direction of fiber tracts and more movement along the tract, gen-

erally resulting in higher estimates of FA. FA values range from 0 (iso-

tropic diffusion) to 1 (anisotropic diffusion) (Delorenzo et al., 2013).

dMRI and FA measures have been used to study white matter

microstructure abnormalities in mood disorders (Henderson et al.,

2013; Korgaonkar et al., 2011; Olvet et al., 2014; Peng et al., 2013). A

2009 meta-analysis of dMRI studies reported that, in 21 of the

27 studies examined, subjects with mood disorders had lower FA in

frontal and temporal lobes (Sexton, Mackay, & Ebmeier, 2009).

Another meta-analysis documented similar findings, in which patients

with MDD showed reduced FA values in the white matter of bilateral

frontal and right occipital areas (Liao et al., 2013). Similar to the
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volumetric/thickness analyses, however, although a trend of reduced

FA in MDD has been noted in literature (Murphy & Frodl, 2011; Shi-

zukuishi et al., 2013), not all studies detect these differences.

Increased and decreased FA values in the corpus callosum, parietal,

and frontal lobes (Aghajani et al., 2014; Osoba et al., 2013) or no sig-

nificant differences between groups (Abe et al., 2010; Kieseppa et al.,

2010; Olvet et al., 2016; Ugwu, Amico, Carballedo, Fagan, & Frodl,

2015) have been reported.

Beyond the first level analyses of volume, cortical thickness or FA

differences in MDD, of even greater uncertainty are the laterality

effects of depression which are still not well characterized (Amico

et al., 2011; Jaworska, MacMaster, Yang, et al., 2014) as some studies

have found more robust structural deficits in the right compared to

the left cerebral hemispheres (Mackin et al., 2013; Peterson et al.,

2009; Qiu, Huang, et al., 2014) and vice versa (Bijanki, Hodis, Brumm,

Harlynn, & McCormick, 2014; Treadway et al., 2015) related to MDD

severity (Jaworska, MacMaster, Gaxiola, et al., 2014; Jaworska,

MacMaster, Yang, et al., 2014).

Disagreement in MDD-related neurobiological findings within any

one modality potentially reflects the variability in depression itself

(Joober, 2013) and suggests that multiple modalities of imaging and

clinical assessment may be required to uncover disease biology

(M. L. Phillips, 2012). Multimodal imaging potentially reveals crucial

variations that could only be partially visible in a single modality and

therefore could potentially unify conflicting findings (Sui, Huster, Yu,

Segall, & Calhoun, 2013). Further, multimodal features used to achieve

the most accurate classification (between depressed and control sub-

jects) or prediction of outcome (such as depression severity) can pro-

vide biological insight into the differences between diagnostic groups.

Therefore, in this study, we used both sMRI and dMRI to classify

depressed subjects versus controls on an individual level and to pre-

dict other outcomes such as overall depression severity or severity of

specific depression symptoms/factors.

The challenge in such studies is in analyzing the large volume of

data, as each modality can produce hundreds (regional) to hundreds of

thousands (voxel) of variables, yet the number of subjects is often lim-

ited. To handle these challenges, machine-learning techniques have

been applied. A recent systematic review highlighted 19 MRI-based

studies of classification in MDD (Arbabshirani, Plis, Sui, & Calhoun,

2016). Though classification accuracies of the 19 studies ranged from

54.6% (Serpa et al., 2014) to 90.3% (Mwangi, Ebmeier, Matthews, &

Steele, 2012), none of the selected discriminating features have been

replicated or translated into clinical practice. There may be a few rea-

sons for this. One is due to relatively small sample sizes. Only two

studies included 40 or more depressed subjects, the maximum num-

ber of depressed subjects was 57 and 12 studies included 30 MDD

subjects or fewer (Arbabshirani et al., 2016). This is a significant issue,

as accuracy decreases with decreasing sample size, and is considered

the most critical factor (Arbabshirani et al., 2016). Another issue is fea-

ture selection bias. This occurs when the features with the highest

discrimination were both extracted from, and used for, classification

within the same data set. This leads to overly inflated accuracy esti-

mates (Arbabshirani et al., 2016). Furthermore, “overfitting” is more

likely to occur with complex models, particularly if the process of both

training and testing is repeated multiple times, with varying model

parameters (Arbabshirani et al., 2016). Cross-validation can compen-

sate for this by providing relatively robust estimate of prediction per-

formance. However, most studies used only leave-one-out cross

validation, which may not always lead to consistent model estimates

(Shao, 1993). Replication in a separate subject sample is a more robust

way of ruling out effects of overfitting.

In addition to the above concerns, only one MDD study from this

meta-analysis combined data from multiple modalities (task-based

functional MRI [fMRI], resting state fMRI and dMRI). That study

involved participants with late life depression (LLD) compared to

elderly controls and predicted LLD diagnosis and treatment response

with accuracies of 87.27 and 89.47%, respectively, suggesting the

benefits of multimodal imaging (Patel et al., 2015). Though they did

not assess classification accuracy, three additional studies have incor-

porated multimodal brain imaging techniques to explore depression

pathophysiology, focusing on uncovering group-level differences

(K. Choi et al., 2008; Matthews et al., 2011; Sexton et al., 2012). Our

study is therefore unique in that it involves the combination of two

MR imaging modalities, a focus on MDD (diagnosis and factors) classi-

fication and one of the largest cohorts (n = 307) reported to date. Crit-

ically, our study uses separate cohorts for training and validation, in

which only a single set of parameters (identified as optimal from the

training) was applied to the validation set. The advantage of this

approach is that it avoids the potential bias of within-sample cross-

validation. As the purpose of the classification is to identify compo-

nents of the sMRI and dMRI that may serve as biomarkers of MDD,

we evaluated two potential classification schemes: (a) MDD versus

controls and (b) severe MDD versus mild MDD versus controls. We

also examined the ability of sMRI and dMRI to predict depression

severity (continuous measure). Finally, to reduce the heterogeneity

within groups, we examined the ability of sMRI and dMRI to predict

the severity of factors of depression derived from a factor analysis of

the 24-item Hamilton Depression Scale, which are continuous mea-

sures. The analysis predicting factors was performed because clinical

management may require deconstructing MDD into multiple dimen-

sions, or symptom clusters (Hamilton, 1960). Individual factors com-

prise different combinations of partially orthogonal symptoms. These

factors may have different risk factors (Fried, Nesse, Zivin, Guille, &

Sen, 2014) and may associate with different neurobiological anomalies

on sMRI and dMRI. Therefore, we examined whether we could obtain

higher sensitivity for relating neurobiology to components of clinical

presentation versus the entire syndrome.

By identifying sMRI and dMRI-based measures that contribute

the most to each classification/predictive model, this study thus aims

to bridge the gap between neuroscience and behavior, in order to

enhance current understanding of the pathophysiological mechanisms

of major depression.

2 | MATERIALS AND METHODS

2.1 | Subjects

All participating individuals provided informed consent for the study,

following explanation of the experimental procedures of the study.
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This study was approved by the Institutional Review Board (IRB) of

each institution. The study was performed in compliance with the

Code of Ethics of the World Medical Association (Declaration of

Helsinki) and the standards established by each institution's IRB and

each investigator's granting agency.

Data for 217 participants (training set: 25 Healthy Controls,

114 MDD; validation set: 12 Healthy Controls, 66 MDD) in this analy-

sis were acquired from the Establishing Moderators and Biosignatures

of Antidepressant Response for Clinical Care (EMBARC) study (U01

MH092250, http://embarc.utsouthwestern.edu/). Details on the

EMBARC study design and randomization are reported by Trivedi

et al. (2016). EMBARC dMRI and sMRI samples have been used in

previous publications including: dMRI—Olvet et al. (2016) or sMRI—

Perlman et al. (2017) only examinations of MDD versus controls and a

dMRI-only study of anxious depression versus nonanxious depressed

groups (Delaparte et al., 2017). These single modality studies showed

no group differences, motivating the interest in the present multi-

modal examination.

To ensure that the MDD sample was representative and as large

as possible, data for an additional 90 participants (training set:

27 Healthy Controls, 33 MDD; validation set: 13 Healthy Controls,

17 MDD) were drawn from 10 neuroimaging and depression-related

studies conducted at the New York State Psychiatric Institute/Colum-

bia University Medical Center, from October 2007 through October

2011. The dMRI data from 20 of these subjects was previously

reported in an analysis of suicide attempters (Olvet et al., 2014) and

impaired attention in MDD (Rizk et al., 2017).

To maximize generalizability, all cohorts were represented in both

the training and validation sets.

Across all 11 protocols, subjects were between the ages of

18 and 65 years old and had the capacity to provide informed con-

sent. MDD common inclusion criteria were DSM-IV MDD diagnosis,

determined via the Structured Clinical Interview for the DSM (SCID),

and in a current depressive episode. Common exclusion criteria for all

subjects were current pregnancy, lifetime history of psychosis or bipo-

lar disorder, meeting DSM-IV criteria for substance dependence in the

past 6 months or substance abuse in the past 2 months, unstable psy-

chiatric or general medical conditions that may require hospitalization

or contraindicate study medication, clinically significant laboratory

abnormalities, history of epilepsy or condition requiring an anticonvul-

sant, protocol excluded medications (including but not limited to anti-

psychotics, and mood stabilizers), or significant risk of suicide.

Common exclusion criteria for controls also included any other Axis I

disorders. All subjects were free of antidepressant medication for at

least 21 days at the time of scanning.

All image analyses were performed by a single image analysis lab

within a standardized processing pipeline. All technicians were blinded

to subject diagnoses.

2.2 | Image acquisition: sMRI

Details on the EMBARC study's scanning and processing protocols

are reported by Iscan et al. (2015). In brief, T1 anatomical images were

acquired with 3T scanners across five sites: University of Texas South-

western Medical Center (TX: Philips Achieva, 8-channel head coil),

University of Michigan (UM: Phillips Ingenia, 15-channel), Massachu-

setts General Hospital (MGH: Siemens TrioTim, 12-channel), Columbia

University Medical Center (CU: GE Signa HDx, 8-channel & GE Dis-

covery MR750, 8-channel), and Stony Brook University Medical Cen-

ter (SBU: Siemens TrioTim, 12-channel). MPRAGE sequences were

used for T1 acquisition at TX, UM, MGH, and SBU, while an IR-FSPGR

sequence was used at CU. The following MR sequence parameters

were maintained across the four sites: TR: 5.9–8.2 ms, TE: 2.4–4.6 ms,

Flip Angle: 8–12�, Acquisition Matrix: 256 × 256 or 256 × 243,

Acceleration Factor: 2, Sagittal Slices: 174–78, and Voxel Dimensions:

1 mm3 isotropic. sMRIs from the other protocols were all acquired on

a 3T GE Signa HDx scanner, using comparable acquisition parameters.

2.3 | Image processing: sMRI

Region-wise cortical thickness was computed on a Linux-based com-

puting cluster for 68 Desikan–Killiany (DK) atlas regions (Desikan

et al., 2006) with FreeSurfer 5.3’s cortical reconstruction pipeline

(http://surfer.nmr.mgh.harvard.edu/). The pipeline's subroutines have

been described in previous publications, but in brief, the processing

steps include skull-stripping (Segonne et al., 2004), Talairach transfor-

mation, subcortical gray/white matter segmentation (Fischl et al.,

2002), intensity normalization (Sled, Zijdenbos, & Evans, 1998), gray/

white matter tessellation, topology correction (Fischl, Liu, & Dale,

2001; Segonne, Pacheco, & Fischl, 2007), and intensity gradient based

surface deformation to generate gray/white and gray/cerebrospinal

fluid surface models (Dale, Fischl, & Sereno, 1999; Fischl et al., 2001;

Segonne et al., 2007). The resulting surface models were then inflated

and registered to a spherical surface atlas, allowing parcellation of cor-

tical regions of interest and estimation of regional volumes (Fischl,

Sereno, & Dale, 1999; Fischl, Sereno, Tootell, & Dale, 1999; Fischl

et al., 2004). Finally, regional cortical thicknesses were computed by

taking the mean of the white-pial distance at all vertices within each

parcellated region (Fischl & Dale, 2000). The surface models (used to

calculate cortical thickness) then underwent an empirical, systematic

inspection process (see Iscan et al., 2015 for details). In short, a trained

technician carefully inspected 2D sections of the pial and white sur-

face models, overlaid on the T1w image, for fidelity to visible tissue

class boundaries. Cases where inaccurate tissue delineation persisted

for ≥6 consecutive coronal and axial slices were deemed inaccurate

and thus disqualified from further analyses.

2.4 | Image acquisition: dMRI

In the EMBARC sample, diffusion images were acquired using a

single-shot EPI (echo planar imaging) sequence. Scan parameters

were as follows: TR = 8,310–9,500 ms, TE = 95–96.3 ms, flip angle

90�, slice thickness = 2.5 mm, FOV = 240 × 240 mm2, voxel dimen-

sions 2.5 × 2.5 × 2.5 mm3 or 1.9 × 1.9 × 2.5 mm3, acquisition

matrix = 96 × 96, b value = 1,000 s/mm2, and 64 collinear directions

with 1 or 5 nonweighted images. Diffusion images in the other pro-

tocols were acquired with comparable parameters. However, 25 col-

linear directions, voxel dimensions of 2.5 × 2.5 × 2.5 mm3, and an

FOV of 256 × 256 mm2 were used.
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2.5 | Image processing: dMRI

Each dMRI image was run through a series of quality assurance tests

for common artifacts, including ghost, ring, slice-wise intensity, vene-

tian blind, and gradient-wise motion artifacts (Liu et al., 2010). Diffu-

sion images were then corrected for distortion induced by gradient

coils and simple head motion using the eddy current correction rou-

tine within FSL (FMRIB Software Library, http://www.fmrib.ox.ac.uk/

fsl/). FSL's Brain Extraction Tool removed non-brain tissue from the

image. Following this, Camino (http://web4.cs.ucl.ac.uk/research/

medic/camino/pmwiki/pmwiki.php) was used to estimate FA by com-

puting the least-squares-fit diffusion tensor with nonlinear optimiza-

tion using a Levenburg–Marquardt algorithm, constrained to be

positive by fitting its Cholesky decomposition (Alexander & Barker,

2005; Jones & Basser, 2004).

The dMRI images were coregistered to the cropped T1 images

using Advanced Normalization Tools (ANTS; http://www.picsl.upenn.

edu/ANTS/) and the inverse transformation was applied to the

Freesurfer-derived cortical map in order to place the regions of inter-

est into dMRI space for analysis. Finally, mean FA values in white mat-

ter were computed for each region. A trained technician manually

inspected each aspect of the dMRI analysis including level of artifact

(based on the cutoffs defined in Liu et al., 2010), distortion correction,

coregistration, and FA histogram.

2.6 | Data preparation statistics

In the EMBARC sample, of the 193 MDD subjects in the training set,

178 (92%) unique baseline MRI sessions possessed both dMRI and

sMRI acquisitions, 121 of these 178 sessions (68%) passed Freesurfer

surface validation, and 114 of the 121 (94%) passed dMRI validation.

Of the 93 MDD subjects in EMBARC's validation set, 82 (88%) unique

baseline MRI sessions possessed both dMRI and sMRI acquisitions,

66 of these 82 (80%) passed Freesurfer surface validation, and all

remaining 66 passed dMRI validation. Of EMBARC's 40 healthy con-

trol (HC) scans, 93% passed validation. Two-thirds of the all scans

were used for the training data set. Ninety (88%) of the 102 qualifying

scans from the other 10 protocols passed sMRI and dMRI validation.

Similar to the EMBARC sample, two-thirds of the validated MDD and

HC scans from the other protocols were randomized to the training

data set.

2.6.1 | Features

Since the biological underpinnings of MDD are unknown, a large

number of potential features were examined. For each subject,

225 features were included: age at evaluation, sex, handedness,

145 sMRI-based, and 77 dMRI-based features.

sMRI features included:

1. bilateral gray matter volume of 34 DK (Desikan et al., 2006) and

11 subcortical Center for Morphometric Analysis (CMA, Fischl

et al., 2004) regions (68 + 22 = 90 features),

2. volumes of brainstem, CSF, and subdivided corpus callosum

(seven features),

3. whole-brain measures: bilateral mean thickness and whole-brain

volume (2 + 1 = 3 features) to supplement the regional measures

in (1), and:

4. the asymmetry index (L−RL+R ×100), where L is the measure on the

left and R is the measure on the right, was designed to gauge the

magnitude and direction of morphological asymmetry (Cherbuin,

Reglade-Meslin, Kumar, Sachdev, & Anstey, 2010), and was com-

puted for the bilateral CMA and DK regions above (45 features).

dMRI features included: the average FA in white matter segmenta-

tions of the 34 bilateral DK regions (68 features), 5 corpus callosum

regions (5 features), and the bilaterally divided cerebrum and cerebel-

lum (4 features).

2.6.2 | Outcome measures

Discrete measure

We evaluated two potential classification schemes: (a) MDD versus

controls and (b) severe MDD versus mild MDD versus control. Sixty-

eight patients had severe depression with a Hamilton Depression Rat-

ing Scale (HAMD) 17 item total score greater than 19. Subjects' char-

acteristics and HAMD scores for training and validation data sets are

listed in Tables 1 and 2.

Continuous measure

This included depression severity (HAMD total score) and factors.

Each factor is a sum of the products of the factor's HAMD items and

corresponding loading values. The loading values were obtained from

a previous factor analysis of the HAMD, which was optimized for self-

report measures with potentially correlated factors by using polycho-

ric correlation (PCC) and a nonorthogonal rotation (Milak et al., 2005).

Factor scores for the training and validation data sets are shown in

Tables 1 and 2.

Factor 1: Psychic depression, including HAMD items 1–3,

8, 22–24, signifying depressed mood, guilt, suicidality, retardation,

helplessness, hopelessness, and worthlessness;

Factor 2: Loss of motivated behavior, including HAMD items

7, 12, 14, 16, involves work and activities, somatic and genital symp-

toms, and weight loss;

Factor 3: Psychosis, including HAMD items 17, 19–21, evaluates

lack of insight, depersonalization, derealization, paranoia, obsessive,

and compulsive behavior. (This factor was not evaluated because the

majority of subjects had scores of 0.);

Factor 4: Anxiety, including HAMD items 9–11, 15, involving agi-

tation, hypochondrias, psychic, or somatic anxiety); and.

Factor 5: Sleep disturbance, including items 4–6, relating to

insomnia.

2.6.3 | The predictive modeling systems

With the separate data set available to validate model findings, we

took an exhaustive approach in applying predictive models to the

training data. Figure 1 illustrates the workflow of the predictive

modeling system. It starts with data preprocessing, followed by fea-

ture selection, predictive modeling, and variable importance ranking

evaluation blocks, which in turn provide additional information for
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better feature selection. Validation was performed on the final classi-

fier built on the training data set.

Initial feature selection was based on between-feature correlation

after applying centering and scaling to all features. Highly correlated

image features that had an average correlation coefficient with the

rest of the features >0.7 were eliminated here. Fifty-six features were

removed in this step: 36 sMRI measures and 20 dMRI measures.

Another initial feature selection performed was based on having a

well-conditioned matrix of pairwise correlation coefficients among all

features. A matrix is considered to be ill-conditioned if the two-norm

condition number (the ratio of its smallest to the largest eigenvalue) is

smaller than a tolerance value (2e-15). Jollifee's method (Jolliffe,

2002) was used to select a subset of features that have a well-

conditioned correlation coefficient matrix. Using this method, 27 addi-

tional features were removed: 23 sMRI measures, and 4 dMRI

measures.

After initial feature selection, different predictive models were built

to predict binary outcomes: MDD versus HC and ordinal outcomes: HC,

mild MDD, and severe MDD. These included commonly used

approaches such as the penalized logistic regression (PLR) model with

elastic net penalty, random forest (RF), and support vector machine

(SVM) with linear or nonlinear kernels such as cubic polynomial and

radial basis function kernels. Extensions of these three classifiers for

ordinal classification were used for predicting ordinal outcomes: under

TABLE 1 Subject characteristics and Hamilton Depression Rating Scale (HAMD 17-item) scores by severity index for the training samples

Variable
MDD
(N = 147)

Severe MDD
(N = 68)

Mild MDD
(N = 79)

Healthy
control
(N = 52) p values

p value
for severe
versus mild

p value for
severe
versus HC

p value
for mild
versus HC

Male 53 (36.05%) 30 (44.12%) 23 (29.11%) 21 (40.38%) .1473

Age (years) 36.78 � 12.94 40.83 � 12.31 33.29 � 12.51 32.48 � 12.15 .0002 .0003 .0003 .7113

Left handedness 11 (7.48%) 7 (10.29%) 4 (5.06%) 1 (1.92%) .4204

Right handedness 127 (86.39%) 57 (83.82%) 70 (88.61%) 48 (92.31%)

HAMD 18.83 � 4.63 22.84 � 2.80 15.38 � 2.71 1.04 � 1.45 <.0001 <.0001 <.0001 <.0001

Factor 1
Psychic depression

(max = 16.04)

6.63 � 1.97 7.40 � 1.94 5.97 � 1.75 0.15 � 0.57 <.0001 <.0001 <.0001 <.0001

Factor 2
motivation (max = 5.84)

2.36 � 1.20 3.05 � 1.12 1.76 � 0.91 0.05 � 0.19 <.0001 <.0001 <.0001 <.0001

Factor 3
Psychosis (max = 7.2)

0.44 � 0.60 0.52 � 0.67 0.36 � 0.53 0.00 � 0.00 .1046

Factor 4
Anxiety (max = 10.24)

2.62 � 1.25 3.14 � 1.18 2.17 � 1.13 0.27 � 0.40 <.0001 <.0001 <.0001 <.0001

Factor 5
Sleep (max = 4.32)

2.11 � 1.41 2.93 � 1.21 1.40 � 1.17 0.12 � 0.32 <.0001 <.0001 <.0001 <.0001

MDD = major depressive disorder; HC = healthy controls. Notes. p values were based on ANOVA comparing severe MDD, mild MDD, and HC. For those var-
iables that had significant differences among three groups, all pair-wise comparisons were still significant except that there was no significant age differ-
ence between mild MDD and HC.

TABLE 2 Subject characteristics and Hamilton Depression Rating Scale (HAMD 17-item) scores by severity index for the validation samples

Variable
MDD
(N = 83)

Severe MDD
(N = 32)

Mild MDD
(N = 51)

Healthy
control
(N = 25) p values

p value
for severe
versus mild

p value
for severe
versus HC

p value
for mild
versus HC

Male 32 (38.55%) 10 (31.25%) 28 (54.9%) 12 (48%) .3944 – – –

Age (years) 35.66 � 12.44 34.94 � 12.48 36.12 � 12.52 33.72 � 13.43 .7484 – – –

Left handedness 10 (12.05%) 2 (6.25%) 8 (15.69%) 2 (8%) .0624 – – –

Right handedness 69 (83.13%) 26 (81.25%) 43 (84.31%) 22 (88%)

HAMD 18.76 � 4.50 23.59 � 2.38 15.73 � 2.30 1.28 � 2.01 <.0001 <.0001 <.0001 <.0001

Factor 1
Psychic depression

(max = 11.05)

6.70 � 1.82 7.47 � 1.72 6.21 � 1.73 0.18 � 0.35 <.0001 .0004 <.0001 <.0001

Factor 2
Motivation (max = 5.84)

2.35 � 1.13 3.16 � 1.08 1.85 � 0.83 0.02 � 0.10 <.0001 <.0001 <.0001 <.0001

Factor 3
Psychosis (max = 2.18)

0.30 � 0.50 0.37 � 0.50 0.25 � 0.50 0.00 � 0.00 0.3138 – – –

Factor 4
Anxiety (max = 6.32)

2.49 � 1.21 3.35 � 1.23 1.95 � 0.83 0.31 � 0.45 <.0001 <.0001 <.0001 <.0001

Factor 5
Sleep (max = 4.32)

2.24 � 1.28 2.99 � 1.00 1.77 � 1.21 0.25 � 0.63 <.0001 <.0001 <.0001 .0001

MDD = major depressive disorder; HC = healthy controls. Notes. p values were based on ANOVA comparing severe MDD, mild MDD, and HC. For those var-
iables that had significant differences among three groups, all pair-wise comparisons were still significant except that there was no significant age differ-
ence between mild MDD and HC.
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the PLR framework, cumulative logit model, adjacent category model,

backward continuation ratio model, and forward continuation ratio

model were used; under the SVM framework, results from binary classi-

fiers were aggregated using three different decoding methods—robust

tree decoding, maximum vote decoding for the “one-against-all” scheme

and most frequent vote decoding using the “one-against-one” scheme.

Predictive models for predicting continuous HAMD and factor scores

among MDD patients included penalized linear regression with elastic

net penalty, RF, and support vector regression.

All predictive models were built using R 3.3.1 (R Core Team, 2015).

Prediction performance of binary classifiers was measured by area

under the receiver operating curve (AUC), misclassification rate, sensitiv-

ity, specificity, positive predictive value, and negative predictive value.

Prediction performance of ordinal classifiers was measured by percent-

age correctly classified (PCC) and the rank correlations between the pre-

dicted class and true class such as Spearman's ρ, Kendall's τ, Goodman–

Kruskal Γ, and Cohen's κ. Prediction performance of models for continu-

ous scores was measured by root mean squared error (RMSE) and R2. All

tuning parameters of these predictive models were chosen based on

10 repeated fivefold cross validation in the training data set.

Variable importance ranking was based on the predictive models

that had the highest average AUCs, highest average PCC, or smallest

average RMSE after 10 repeated fivefold cross validation. For predic-

tive models using PLR framework, the features in the final model were

ranked by their absolute coefficient estimates: the larger the absolute

value of the estimated coefficient, the greater the contribution this

feature provided to the final prediction. For predictive models using

the SVM framework, the contribution of each feature was reflected

through its nonzero weights. For predictive models using RF, the vari-

able importance rankings were based on the Gini impurity index

(Breiman, 2001). All top ranked features from these predictive models

were used in the final predictive models.

2.6.4 | Validation

Calibration is an essential aspect of external validation (Steyerberg et al.,

2010). Calibration in the large was used to determine whether the mean

predicted probability of MDD is equal to the mean observed MDD rate

in the validation data set (Van Calster et al., 2016). The ideal value is zero

difference between predicted and observed probabilities. The assess-

ment of the overall predictive effect was graphically evaluated in a cali-

bration plot and used for estimation of a calibration slope. A calibration

plot displays the relationship between predicted MDD risk (x axis) and

observed true group label (MDD = 1, HC = 0, y axis) by fitting a flexible

nonlinear calibration curve using a nonparametric regression method

called loess, the local regression using polynomials (Austin & Steyer-

berg, 2014). The estimation of the calibration slope b, is by fitting

the following model: logit P Y =1ð Þð Þ= a+ b× logit p̂ð Þ, where a is the

model intercept, and p̂ is the predicted risk. Therefore, the calibration

slope summarizes the relationship between the predicted risks and

the observed true labels. For example, using this validation, a calibra-

tion slope less than 1 reflects an overestimation of MDD risk, and vice

versa for a calibration slope greater than 1 (Van Calster et al., 2016).

3 | RESULTS

After an initial round of model building for predicting different out-

comes, features were ranked accordingly. The final predictive models

for each type of outcome contained 39 features that were top ranked.

Table A1 has a complete list of these 39 features: 16 sMRI measures,

21 dMRI measures, sex, and age.

3.1 | Binary classification for predicting MDD
versus HC

The best binary classifiers in PLR, SVM, and RF for predicting MDD

had AUC ranges from 0.69 to 0.74 with accuracy rates ranging from

73.45 to 75.05% (Table 3). The classifier using SVM with a radial basis

function kernel had the best AUC of 0.74 � 0.02. Table 4 lists a combi-

nation of all of the top 10 ranked features from each of the three

binary classifiers. The mean FA in the left medial orbitofrontal cortex

and right cuneus contributed highly to predicting MDD in this analysis.

To evaluate the influence of the feature selection on algorithm

output, an independent classification method was also applied to pre-

dict MDD versus HC. Half of training data patients were randomly

selected to tune the algorithm and the rest were used as to evaluate

the results. Due to the imbalance of the classes, the training set was

downsampled while all the validation data were used. No feature

selection was used. RF and classification trees were built for classifica-

tion. The fact that splitting variables (the most predictive variables for

RF) used in these two tree-based classification were among the fea-

tures selected for predictive model building confirms the robustness

of our feature selection strategies.

FIGURE 1 The general workflow of the predictive modeling system, which starts with data preprocessing, followed by feature selection,

predictive modeling, and variable importance ranking evaluation blocks, which in turn provide additional information for better feature selection.
Validation was performed on the final classifier built on the training data set [Color figure can be viewed at wileyonlinelibrary.com]

YANG ET AL. 7

http://wileyonlinelibrary.com


3.2 | Ordinal classification for severity index: Severe
MDD, mild MDD, and HC

Different ordinal classifiers under the SVMand PLR framework in addition

to RF were constructed to predict severe MDD, mild MDD, and HC. The

predictive performance of the best classifiers using SVM, PLR, and RF is

summarized in Table 5. The highest average PCC from 10 repeated five-

fold cross-validation, 52.2%, was from an SVM classifier assigning subjects

to each class using most frequent vote based on pairwise SVM classifiers.

A combination of all of the top 10 ranked features from these ordinal clas-

sifiers is listed in Table 6. Mean FA in the left medial orbitofrontal cortex

and right cuneus again contributed highly in placing subjects into correct

subcategories in each of three ordinal classifiers.

3.3 | Prediction of Hamilton scores among patients
with MDD

When using PLR, SVM, and RF to build predictive models for HAMD

total score and its factor scores, SVM using a radial basis function kernel

had the best predictive performance for HAMD score, Factors 1 and 4;

RF had the best predictive performance for Factor 5; PLR had the best

performance for Factor 2 (Table 7). Permutation tests applied to these

best models for predicting each continuous outcome suggested that the

corresponding RMSEs were not significantly below chance levels, except

for Factors 2 and 5. Frequently top-ranked variables in predicting all five

continuous scores can be found in Table 8. Two variables that contribute

highly in predicting all five different continuous scores are mean FA in

the right cuneus and the volume of the right choroid plexus.

3.4 | Comparisons across models

Among all top ranked features from predictive models built for all out-

comes here, four common elements contributed to model accuracy, as

indicated in the center area of Figure 2. These include mean FA in the

right cuneus and left insula and asymmetry in the volume of the pars

triangularis and cerebellum.

As an additional check of the importance of these four features,

the above models were rerun with the inclusion of all features

(i.e., without doing any feature selection). Without feature selection,

these four common features remained highly ranked in one or more

of the analyses: mean FA in the right cuneus (binary: rank = 1; ordinal:

2; continuous outcomes: 2), mean FA in the left insula (binary: 47;

ordinal: 7; continuous: 3); volume asymmetry in the pars triangularis

TABLE 3 Predictive accuracy of binary classification

Outcomes

Area under the curve (AUC) Accuracy rate

PLR SVM RF PLR SVM RF

MDD versus HC 0.73 � 0.03 0.74 � 0.02 0.69 � 0.02 73.45 � 1.57% 74.00 � 1.32% 75.05 � 1.17%

MDD = major depressive disorder; HC = healthy controls; PLR = penalized logistic regression model with elastic net penalty; SVM = support vector
machine; RF = random forest. Note. Mean � SD were based on 10 sets of average performance measures from repeated fivefold cross validation using
39 features.

TABLE 4 Combination of the top 10 important features from each classifier for binary classification using penalized logistic regression (PLR)

model with elastic net penalty, random forest (RF) and support vector machine (SVM)

Measure Region
Rank in PLR
classifier

Rank in SVM
classifier

Rank in RF
classifier

Average
rank

Mean FA (dMRI) Left medial orbitofrontal 1(2.52) 1(1.30) 1(1.12) 1

Mean FA (dMRI) Right cuneus 2(15.82) 2(2.82) 2(3.40) 2

Gray matter volume (sMRI) Inferior temporal 6(47.88) 4(6.16) 3(6.56) 4.33

Mean FA (dMRI) Left middle temporal 8(49.66) 7(11.74) 4(7.16) 6.33

Mean FA (dMRI) Left lateral orbitofrontal 5(44.62) 5(6.54) 10(13.22) 6.67

Gray matter volume (sMRI) Left pars orbitalis 11(62.82) 3(4.58) 8(9.66) 7.33

Mean FA (dMRI) Right entorhinal 3(31.18) 6(9.30) 22(20.78) 10.33

Gray matter volume
asymmetry (sMRI)

Cuneus 10(61.40) 8(11.94) 14(16.54) 10.67

Mean FA (dMRI) Left lateral occipital 4(44.62) 10(12.50) 20(20.06) 11.33

Gray matter volume
asymmetry (sMRI)

Pars triangularis 7(49.54) 11(13.06) 19(19.54) 12.33

Mean FA (dMRI) Left banks of the
superior temporal
sulcus

9(57.12) 24(25.66) 6(8.72) 13

Mean FA (dMRI) Right rostral anterior
cingulate

13(68.08) 19(21.68) 9(10.36) 13.67

Mean FA (dMRI) Right fusiform 22(81.58) 23(25.22) 5(8.00) 16.67

Volume asymmetry (sMRI) Cerebellum 18(74.02) 9(12.08) 26(25.12) 17.67

Mean FA (dMRI) Left insula 39(141.30) 22(24.02) 7(8.80) 22.67

Notes. Numbers in the parentheses are the average rank from 10 repeated fivefold cross-validation. Average rank refers to the mean rank across the three
algorithms.
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(binary: 38; ordinal: 16; continuous: 4); and volume asymmetry in the

cerebellum (binary: 37; ordinal: 81; continuous: 4).

As mentioned in the feature reduction step, highly correlated fea-

tures were removed. Only one feature removed in this stage was

highly correlated to any of the four common features. This was gray

matter volume of the left ventral diencephalon (Pearson's correlation

coefficient = .8520 with mean FA in the left insula).

3.5 | External validation on predicting MDD
versus HC

Because of the low performance of both ordinal classification and predic-

tive modeling, external validation analysis was only performed on the

binary classifier for MDD versus HC. A patient was classified as having

MDD if her/his predicted probability of having MDD was greater than

50%. The prediction performance for three predictivemodels (as shown in

Table 3) are summarized in Tables 9 and 10. The binary classifier based on

RF had the highest accuracy rate of 78.7% and the highest AUC value of

0.6733, but similar to other two classifiers, the specificity was very low.

(This result supports the criticism about RF on imbalanced data sets

[Dudoit & Fridlyand, 2003].) The calibration plot of this binary classifier

actually suggests that it consistently underestimates the probability of

MDD and hence even though this method has a better discrimination

index (AUC = 0.6733, 95%CI: 0.5508–0.7957), the calibration in the large

isworse than SVMor PLR (Figure 3).

4 | DISCUSSION

MDD is a prevalent disease with a growing global impact. Although

numerous imaging studies have uncovered neurobiological differences

TABLE 5 Predictive accuracy of ordinal classification

Model
Percentage correctly
classified (PCC) Spearman's rho Kendall's tau

Goodman–Kruskal's
gamma Cohen's kappa

SVM with most frequent
class based on pairwise
classification

52.20 � 1.69% 0.3591 � 0.0378 0.3267 � 0.0340 0.4828 � 0.0474 0.3468 � 0.0394

PLR with forward continuation 47.05 � 2.87% 0.3736 � 0.0320 0.3359 � 0.0305 0.5062 � 0.0473 0.3674 � 0.0339

Random forest 47.80 � 3.04% 0.2935 � 0.0492 0.2687 � 0.0451 0.4213 � 0.0638 0.1313 � 0.0253

Notes. Mean � SD were based on 10 sets of average performance measures from repeated fivefold cross validation using 39 features.

TABLE 6 Combination of the top 10 ranked features from the best ordinal classifiers using SVM, RF, and PLR

Measure Region
Rank in SVM
classifier

Rank in RF
classifier

Rank in PLR
classifier

Average
rank

Mean FA (dMRI) Left medial orbitofrontal 1(10.54) 2(4.08) 2(5.06) 1.67

Mean FA (dMRI) Right cuneus 5(13.82) 3(8.94) 6(7.74) 4.67

Mean FA (dMRI) Left lateral orbitofrontal 3(12.42) 6(12.05) 12(14.89) 7

Gray matter volume
asymmetry (sMRI)

Pericalcarine 4(13.76) 22(22.61) 1(4.87) 9

Gray matter volume
asymmetry (sMRI)

Precentral 8(14.34) 5(11.94) 19(19.13) 10.67

Mean FA (dMRI) Right rostral anterior cingulate 7(14.32) 20(22.42) 7(8.21) 11.33

Mean FA (dMRI) Right lingual 9(15.56) 7(13.00) 20(19.31) 12

Gray matter volume
asymmetry (sMRI)

Pars triangularis 11(16.60) 21(22.45) 4(6.90) 12

Gray matter volume (sMRI) Left pars orbitalis 21(21.02) 15(21.58) 3(5.32) 13

Mean FA (dMRI) Right entorhinal 19(20.50) 18(21.94) 5(7.08) 14

Gray matter volume (sMRI) Inferior temporal 10(16.28) 14(20.59) 21(21.43) 15

Gray matter volume (sMRI) Right pars triangularis 6(14.06) 23(22.85) 17(18.18) 15.33

Mean FA (dMRI) Left insula 12(16.60) 10(17.77) 28(26.43) 16.67

Age Age 16(17.64) 1(3.64) 33(29.42) 16.67

Mean FA (dMRI) Right caudal anterior cingulate 2(10.98) 36(24.98) 16(17.18) 18

Gray matter volume
asymmetry (sMRI)

Lingual 14(17.40) 33(24.57) 9(12.00) 18.67

Mean FA (dMRI) Left lateral occipital 23(21.24) 24(22.95) 10(12.66) 19

Cortical thickness (sMRI) Left hemisphere (average) 15(17.62) 9(14.11) 38(32.09) 20.67

Gray matter volume (sMRI) Right choroid plexus 20(20.92) 8(13.52) 35(29.91) 21

Volume asymmetry (sMRI) Cerebellum 28(23.04) 28(23.73) 8(11.77) 21.33

Cortical thickness Right hemisphere (average) 34(24.64) 4(9.55) 36(30.32) 24.67

MDD = major depressive disorder; HC = healthy controls; PLR = penalized logistic regression model with elastic net penalty; SVM = support vector
machine; RF = random forest. Notes. Numbers in the parentheses are the average rank from 10 repeated fivefold cross-validation. Average rank refers to
the mean rank across the three algorithms.
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associated with MDD, clinically translatable markers have yet to be

identified. This may be due to limited sample sizes used in previous

studies, leading to overfitting of data, and not using a separate replica-

tion sample, resulting in inconsistency of results across studies. To

overcome these previous limitations, the current study involved an

exploration in 199 subjects, using a multisite design and validation of

findings in a separate cohort of 108 subjects.

4.1 | Modeling/methodology

To represent a generalizable sample, image-derived data in this study

were acquired from eight sites with seven different MRI scanners.

Because systematic differences in image-derived measures across

scanners have been reported (Iscan et al., 2015; Madan, 2017), adjust-

ing for site/scanner differences was considered. Two ways of adjust-

ing for these differences were explored (data not shown): (a) using

linear regression to estimate the site/scanner differences after con-

trolling for age, sex, and handedness and then normalizing each imag-

ing feature to the reference site/scanner with the most samples;

(b) using quantile normalization. In most cases, adjusting for site/scan-

ner within this study did not improve predictive performance, and in a

few cases, this adjustment reduced predictive performance (data not

shown). Further, top ranked features were similar among models with

and without adjusting for these differences. Therefore, with the inten-

tion of generalizing our predictive models, no site/scanner adjustment

was implemented in this study.

In this study, multiple classification techniques were applied to a

training set of 199 subjects (52 HC, 147 MDD) with two different

imaging modalities (dMRI and sMRI). Regional gray matter (volume,

asymmetry, and thickness from sMRI) and white matter (FA from

dMRI) measures comprised 222 features. In addition to these image-

based features, sex, age at diagnosis and handedness were used as

predictors of clinical status. We did not include clinical factors such as

length of illness or number of depressive episodes in our prediction

analysis. Though doing so could potentially improve prediction accu-

racy, there are challenges in accurately assessing these variables

(Kruijshaar et al., 2005; Patten, 2003; Takayanagi et al., 2014; Wells &

Horwood, 2004), and the focus of this work was to relate objective

measures of brain biology to depression outcomes. Further, potential

correlations between these variables and depression measures

(Kessler et al., 2007) could confound biological interpretations.

We did not restrict the data set to a priori regions due to a lack of

consensus on MDD neurobiology. The large number of initial features,

TABLE 7 Performance of predicting Hamilton Depression Rating Scale (HAMD) total score and its factor scores in major depressive disorder

Variable

RMSE R2

PLR SVM RF PLR SVM RF

HAMD score 4.6019 � 0.0851 4.3408 � 0.0628 4.5138 � 0.0793 0.0516 � 0.0219 0.1301 � 0.0274 0.0632 � 0.0237

Factor 1: Psychic
depression

2.0498 � 0.0381 1.9742 � 0.0140 2.0226 � 0.0393 0.0261 � 0.0096 0.0334 � 0.0100 0.0302 � 0.0173

Factor 2: Motivation 1.1802 � 0.0245 1.1904 � 0.0138 1.2130 � 0.0189 0.0662 � 0.0265 0.0349 � 0.0198 0.0224 � 0.0150

Factor 4: Anxiety 1.2812 � 0.0202 1.2328 � 0.0095 1.2933 � 0.0199 0.0286 � 0.0262 0.0374 � 0.0233 0.0358 � 0.0170

Factor 5: Sleep 1.4344 � 0.0204 1.3926 � 0.0141 1.3649 � 0.0157 0.0299 � 0.0098 0.0502 � 0.0115 0.0856 � 0.0227

PLR = penalized logistic regression model with elastic net penalty; SVM = support vector machine; RF = random forest; RMSE = root mean squared error.
Note. Mean � SD were based on 10 sets of average performance measures from repeated fivefold cross validation using 39 features.

TABLE 8 Frequently top-ranked variables in predicting HAMD total score and its factor scores (F1–F5) in major depressive disorder; 1 means

the feature is top ranked in predicting one type of score while 0 means it is not

Measure Region HAMD F1 F2 F4 F5

Total count of
appearance in
top ranked features

Mean FA (dMRI) Right cuneus 1 1 1 1 1 5

Gray matter volume (sMRI) Right choroid plexus 1 1 1 1 1 5

Gray matter volume asymmetry (sMRI) Lingual 1 1 1 0 1 4

Gray matter volume asymmetry (sMRI) Pericalcarine 1 1 1 1 0 4

Gray matter volume (sMRI) Right frontal pole 1 1 1 1 0 4

Mean FA (dMRI) Left inferior parietal 1 1 1 1 0 4

Mean FA (dMRI) Left transverse temporal 1 0 1 1 1 4

Volume asymmetry (sMRI) Cerebellum 1 1 0 1 1 4

Gray matter volume asymmetry (sMRI) Cuneus 1 1 1 0 0 3

Gray matter volume asymmetry (sMRI) Pars triangularis 1 0 1 0 1 3

Gray matter volume asymmetry (sMRI) Precentral 1 0 1 1 0 3

Cortical thickness (sMRI) Left hemisphere (average) 1 0 0 1 1 3

Mean FA (dMRI) Left insula 1 1 0 1 0 3

Mean FA (dMRI) Left pars triangularis 1 1 0 0 1 3

Mean FA (dMRI) Left precuneus 1 1 0 0 1 3
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however, required data reduction prior to analysis. Therefore, highly

correlated features and those with ill-conditioned pairwise matrices

(matrices where one input has a large effect on the outcome) were

removed to reduce dimensionality.

An iterative procedure was then used for final feature selection,

with 39 out of 225 features chosen for building the final predictive

models (see Appendix Table A1). This procedure involved applying the

three classifiers discussed latter to the binary, ordinal and continuous

outcomes, ranking the variables in terms of prediction, and then compil-

ing the top 10 features across the three classifiers for each analysis.

This resulted in 37 top image-based features in addition to age and sex.

To determine whether feature selection is sensitive to choice of data

reduction procedure, we also performed the MDD/control and continu-

ous prediction without feature selection and obtained similar results.

Further, a recently proposed variable selection algorithm, stability selec-

tion, was also applied (data not shown) (Hofner, Boccuto, & Goker,

2015; Hofner & Hothorn, 2017; Meinshausen & Bühlmann, 2010;

Shah & Samworth, 2013). All features except one selected by this

method for different outcomes fall within 39 features in Table A1. Iter-

ative sure independence screening methods, in which variable selection

is integrated into the model building process, were also applied (Fan,

Feng, & Song, 2011; Fan & Li, 2001; Fan, Samworth, & Wu, 2009; Tib-

shirani, 1996; Zhang, 2010). However, the predictive performance did

not improve and hence the related results were not reported. Nonethe-

less, a combination of the top 10 important features ranked by these

methods were similar to those reported in Tables 4, 6, and 8. These

results provide confidence that the results were not sensitive to the

use, or choice of, feature selection technique.

The three classifiers applied were PLR, RF, and SVM. Each model

has differing strengths. For example, SVM has advantages when dealing

with binary class data whereas RF is advantageous for multiclass data

with outliers (Hastie, Tibshirani, & Friedman, 2001). PLR has also been

shown to handle outliers better than the SVM (Hastie et al., 2001). The

no free lunch theory asserts that there is no one optimal classifier across

different data sets (Wolpert & Macready, 1997). Therefore, the optimal

modeling strategy may be data dependent. For this reason, three of the

most popular and effective modeling techniques were applied.

4.2 | Model results

For binary classification (MDD/HC), all three models had similar accu-

racy, with misclassification rates of ~26%. In the validation set, results

were poor, with a mean 87.95% sensitivity but only 32% specificity.

Note that, in the validation analysis, a subject was predicted as having

MDD if her/his predicted probability of having MDD was greater than

50%. Raising this threshold did not improve results (data not shown).

The low specificity results from false classification of the majority of

HCs as depressed subjects. Due to the limited number of misclassified

MDD patients, it becomes challenging to determine patient or site

characteristics associated with the misclassification.

The low specificity may have been an effect of the imbalance in sub-

ject numbers between the two classes: ~74% of the sample were MDD

patients. Literature in the machine learning field has recognized the influ-

ence of imbalanced data on the performance of most traditional machine

learning methods (Sun, Wong, & Kamel, 2009). The most popular

approach to handle class imbalance is the synthetic minority oversam-

pling technique (SMOTE), which oversamples by introducing new, nonre-

plicated minority class examples using the nearest neighbors of these

cases (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). The SMOTE resam-

pling technique was used, but did not improve the performance of pre-

dicting MDD or severe MDD (data not shown). In the binary

classification of MDD/HC, the specificity increased to 0.3–0.49 for dif-

ferent predictive models but at the expense of decreasing sensitivity

from 0.95–0.99 to 0.51–0.74. The overall accuracy decreased as well as

AUC values. Similarly, in a classification of severe MDD (i.e., 131 nonse-

vere versus 68 severe subjects), the sensitivity increased from ~0.3 to

~0.6 but at the expense of a specificity drop from ~0.8 to ~0.6, as well

as a decrease in accuracy and AUC values. Therefore, it is unlikely that

this finding is a result of the imbalance, and results without using any

resampling technique are presented here.

The relatively high misclassification rate in the binary classifica-

tion analysis may be a result of treating all depressed patients as a sin-

gle group. Depression is a heterogeneous disease. In fact, there are

nearly 1,500 combinations of symptoms that meet DSM criteria for a

FIGURE 2 Venn diagram for the number of top ranked variables for

all predictive models based on training data set (predictive model for
continuous Hamilton Depression Rating Scale [HAMD17] scores was
based on MDD patients only). MDD = major depressive disorder;
HC = healthy controls

TABLE 9 Confusion matrices of binary classifiers on validation

data set

Model
Validation
outcomes

True healthy
controls

True major
depressive
disorder

Penalized logistic
regression

HC 6 11

MDD 19 72

Support vector
machine

HC 8 10

MDD 17 73

Random forest HC 4 2

MDD 21 81
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depression diagnosis and MDD patients may share only a single symp-

tom (Ostergaard, Jensen, & Bech, 2011). Such heterogeneity may arise

from differing neurobiological underpinnings (Joober, 2013). To

reduce the heterogeneity, therefore, the same models used in the

binary classification were also used to determine whether neurobiol-

ogy can be used to stratify individuals based on levels of depression

severity (control versus mild MDD versus severe MDD). However, the

best predictor model was SVM with a percentage correctly classified

(PCC) close to chance (52.20 � 1.69%). Despite the lack of predictive

success, the top ranked regions overlapped with those of the binary

analysis, providing some confidence in the importance of these

regions as classifiers. Specifically, 11 of the 15 top ranked binary fea-

tures (Table 4) are top ranked features in the ordinal (control versus

mild MDD versus severe MDD) analysis (Table 6, 21 top features).

Further, the top two predictive features across all models were the

same as the binary analysis—mean FA in the left medial orbitofrontal

cortex and the right cuneus, with average ranks of 1.67 and 4.67,

respectively.

TABLE 10 Other performance metrics and their 95% confidence intervals for binary classifiers on the validation data set

Model AUC Accuracy (%) Sensitivity (%) Specificity (%)
Positive predictive
value (%)

Negative predictive
value (%)

PLR 0.5846 (0.4523–0.7169) 72.22 (62.78–80.41) 86.75 (77.52–93.19) 24.00 (9.36–45.13) 79.12 (69.33–86.94) 35.29 (14.21–61.67)

SVM 0.639 (0.5085–0.7696) 75 (65.75–0.82.83) 87.95 (78.96–94.07) 32.00 (14.95–53.5) 81.11 (71.49–88.59) 44.44 (21.53–69.24)

RF 0.6733 (0.5508–0.7957) 78.7 (69.78–86) 97.59 (91.57–99.71) 16.00 (4.54–36.08) 79.41 (70.27–86.78) 66.67 (22.28–95.67)

PLR = penalized logistic regression; SVM = support vector machine; RF = random Forest; AUC = area under the curve.

FIGURE 3 Calibration plot for predicting diagnosis based on 3 methods and 39 features. Calibration in the large quantifies the difference

between mean predicted probability of having major depressive disorder (MDD) and observed proportion of MDD patients. The closer to 0, the
better the calibration is. The calibration slope different from 1 suggests that the overall predictive performance of 39 features was different from
that observed in the validation data. A calibration slope less than 1 reflects an overestimation of MDD risk, and vice versa for a calibration slope
greater than 1 (Van Calster et al., 2016). The c-statistic is identical to the AUC values and its confidence intervals are in Table 10. Spikes at the
bottom of the graph indicate the probability distribution for those with MDD and healthy controls (HC). Triangles indicate quintiles of subjects
according to predicted probability with 95% confidence intervals for the observed proportions of patients with MDD. For example, the fact that
for PLR and SVM, the spikes mostly appear near 0.9, and the triangles are near the right hand side, is consistent with the calibration slope less
than 1, that is, overestimating MDD risk [Color figure can be viewed at wileyonlinelibrary.com]
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To examine whether finer resolution of depression severity is

needed in order to relate severity to neurobiology, we also examined

prediction of a continuous severity measure (HAMD total score). How-

ever, the highest correlation between combinations of high-ranking

features and HAMD scores explained only 13% of the variance.

Although the above analyses increase in resolution (from binary

classification, to three groups, to a continuous measure), they still rely

on aggregate measures of depression severity, which does not over-

come the issue of depression heterogeneity. We therefore sought to

also examine clusters of correlated symptoms, using our previously

published factor analysis of the HAMD. This is in line with NIMH's

Research Domain Criteria (Insel & Cuthbert, 2009), which provides a

neuroscience-based approach to classifying psychopathology using an

expanding set of domains relating to different functions (e.g., “anxiety”

or “arousal”). These factors included psychic depression, motivation,

anxiety, and sleep (excluding psychosis). However, the finer resolution

of symptoms did not result in improved model accuracy, as the R2 value

of the prediction was less than 0.14 in all cases.

Despite the disparate nature of the symptom categories, many of

the same features were implicated in predicting each of the factors

(Table 8), as well as overall severity (as assessed by the HAMD). This

suggests that, despite the low accuracy of any individual model, which

would prevent clinical translation, examining aggregate model results

provides insight into the neurobiological underpinnings of MDD.

36.6% (11 features) were implicated across binary and severity predic-

tion and four features were implicated across all measurements

(Figure 2), although rankings for each feature differed across classifiers.

These four features consisted of two dMRI-based measures (average

FA in the right cuneus and left insula) and two sMRI-based measures

(asymmetry in the volume of the pars triangularis and the cerebellum).

The cuneus is a region in the occipital lobe containing the primary

visual cortex and is associated with the processing of visual cues

(Parker, Zalusky, & Kirbas, 2014). White matter tracts through the

cuneus connect the precuneus to the parietal lobe (Parker et al., 2014).

The precuneus has been shown to be a critical component of the

default mode network (DMN) (Cunningham, Tomasi, & Volkow, 2017;

Fransson & Marrelec, 2008; Klaassens et al., 2017; Utevsky, Smith, &

Huettel, 2014), the network of brain regions implicated in self-

referential thought and activated in the absence of a specific task.

MDD has been associated with an inability to downregulate the DMN

(Sheline et al., 2009), which might be associated with maladaptive

rumination and difficulties disengaging from negative cues. As such,

connectivity from the precuneus (through the cuneus) may be altered

in MDD. Further, the orbitofrontal cortex receives information regard-

ing visual cues indirectly from the primary visual areas (Rolls, 2004a).

The orbitofrontal cortex, which was an important feature in the ordinal

analysis, is implicated in both reward processing and the integration of

sensory and emotional information (Hare, O'Doherty, Camerer,

Schultz, & Rangel, 2008; Kringelbach & Rolls, 2004; Price & Drevets,

2010; Rolls, 2004b). Obitofrontal-cuneus structural connectivity,

which may affect cuneus FA, may therefore be altered in MDD.

Although the group-wise FA differences in the cuneus were not signifi-

cant (HC FA: 0.37 � 0.03, MDD FA: 0.36 � 0.04, p = .35), these FA

measures contributed to overall classification. Potentially relating to

these dMRI-based findings, cuneus volumetric asymmetry was a

significant predictor in both the binary and continuous analysis. Exam-

ining the data revealed that the right cuneus volume was 3.2 � 11.9%

larger than left cuneus volume in the controls and 5.5 � 11.9% larger

than the left cuneus volume in the MDD cohort. This may reflect right-

sided hyperactivity in MDD (Briceno et al., 2013) or right hemisphere

selective involvement in processing negative emotion and negative

self-referential thinking, in conjunction with left hemisphere hypoac-

tivity and bias for positive stimuli and pleasure (Hecht, 2010).

Unlike the cuneus, group-level differences in FA were observable

in the left insula at a trend level (HC FA: 0.49 � 0.04, MDD FA:

0.48 � 0.03, p = .07), although the average difference was too small to

be clinically meaningful. The insula is involved in integrating sensory

interoception signals, cognition, and motivation (Namkung, Kim, &

Sawa, 2017). As such, insula dysfunction (including structural and func-

tional abnormalities) has been implicated in MDD (Namkung et al.,

2017). The insula also has extensive connections to the DMN, and dif-

ferences in connectivity between the insula and the DMN network as

well as the amygdala may result in pathological inward focus in MDD

(Sliz & Hayley, 2012). Further, the right and left anterior insula may

respond to differing stimuli, with the left being activated by prominent

sensory input and emotional feelings (Sliz & Hayley, 2012).

Consistent with the lateral findings in the cuneus, the right pars

triangularis (also referred to as BA45) volume was 12.0 � 15.2%

larger than left pars triangularis volume in the controls and

15.2 � 16.0% larger than the left pars triangularis volume in the MDD

cohort. Reflecting this, the average pars triangularis laterality measure

was negative in both cohorts (HC laterality: −7.1 � 8.2, MDD lateral-

ity: −9.0 � 9.2, p = .18). The pars triangularis is part of the inferior

frontal gyrus and, along with BA44, is considered part of Broca's area,

in which language processing occurs (Ardila, Bernal, & Rosselli, 2016).

Interestingly, a recent meta-analysis using activation likelihood esti-

mation on 28 studies including 403 participants determined that the

functional connectivity network of the inferior temporal gyrus

(another critical language area) in HCs consists of the left prefrontal

cortex (including BA45), the left insula, bilateral precuneus, cerebel-

lum, and occipital areas (as well as the left temporal lobe; Ardila, Ber-

nal, & Rosselli, 2015). As such, this language network includes all four

top predictors in this work. Dysfunction in this network may be one

reason why depression is associated with slower speech and an

increase in pausing (Maser, 1987). Further, changes in verbal fluency

appear to be a hallmark of the disease (Lim et al., 2013).

Consistent with the lateral findings in the cuneus and pars trian-

gularis, though to a lesser magnitude, the right cerebellum volume

was 1.1 � 3.1% larger than left cerebellum volume in the controls and

2.3 � 4.4% larger than the left cerebellum volume in the MDD cohort.

Reflecting this, the average cerebellum laterality measure was nega-

tive in both cohorts (HC laterality: −0.6 � 1.6, MDD laterality:

−1.2 � 2.3, p = .06). The role of the cerebellum in psychiatric disorders

continues to be elucidated (Baldacara, Borgio, Lacerda, & Jackowski,

2008; J. R. Phillips, Hewedi, Eissa, & Moustafa, 2015; Shakiba, 2014).

In MDD, cerebellar volume may be reduced, activity may be increased

and connectivity with cortical brain regions disrupted (J. R. Phillips

et al., 2015).

The above suggest that these features (mean FA in the right

cuneus and left insula, asymmetry in the volume of the pars
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triangularis and cerebellum) may play a significant role in MDD, and

should be examined in future studies. Also, importantly, the signifi-

cance of these features is not immediately apparent from examining

them in isolation (i.e., examining group differences). This emphasizes

the need for techniques examining multiple features in parallel. As the

pathophysiology of MDD continues to be studied, more insight can

be gained into the specific roles of these features, and importantly,

the laterality effect, which is not often addressed, may be uncovered.

4.3 | Limitations

Although we evaluate one of the largest MDD sMRI and dMRI imag-

ing cohorts, across geographically diverse imaging centers, our inclu-

sion/exclusion criteria may prevent these findings from representing

all MDD patients, particularly those with comorbities or on medica-

tion, who were excluded from the current study. Further, there are

numerous other measures that may be extracted from sMRI and dMRI

modalities that were not examined in this study, and may yield more

clinically significant results. Additionally, the choice of brain atlas for

the regional analysis can impact model results. There are available

atlases with finer parcellations than the DK atlas used in this work.

Those would increase the number of model variables (and therefore

complexity) but also would allow detection of smaller regional effects

that may be subsumed by large regional averages. To balance these

concerns, future work could involve finer parcellations of the four

regions implicated in this study. Finally, MDD is a heterogeneous dis-

ease. Although our analysis of depression factors attempts to account

for this, there still may be multiple biological pathways resulting in the

same symptom manifestation, which would confound study results.

And, as these factors were derived from a previous study, they may

not be universally applicable to all populations. For example, using

Cronbach's alpha and Loevinger's coefficient of homogeneity (Olsen,

Jensen, Noerholm, Martiny, & Bech, 2003) confirmed good internal

reliability of the HAMD and Factors 1 and 5, with safely acceptable

reliability of Factor 2 and just acceptable reliability of Factor 4.

5 | CONCLUSION

From this study, we can draw several important conclusions.

(a) Despite our use of multiple models with differing advantages, a

large training data set, and a separate validation analysis, the final

overall model performance was too low for clinical application.

(b) Although four features (mean FA in the right cuneus and left insula,

asymmetry in the volume of the pars triangularis and cerebellum) were

implicated across all analyses, low classification and prediction accu-

racy using these features indicates that they cannot represent the

entire pathophysiology of MDD. However, they may be relevant for

future investigations of MDD neurobiology. (c) It has already been

suggested that dMRI-based measures cannot be used to distinguish

MDD in large samples (K. S. Choi et al., 2014) and this could be one

reason for the equivocal results to date. In agreement with lack of pre-

vious consensus among sMRI and dMRI findings in MDD, the results

of our powerful, comprehensive approach suggest that the sMRI and

dMRI features used here may not provide a usable marker for diag-

nostic classification or prediction of depression severity on their own.

To improve predictive power, future work would involve utilizing

these study characteristics (large cohort, multimodality features,

robust methods, and external validation) to combine the four sMRI

and dMRI measures implicated across all analyses with other potential

neurobiomarkers such as those derived from PET and/or EEG, or

other behavioral measures. Such an approach could bring us closer to

the first clinically relevant biomarker of MDD.
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APPENDIX

ADDITIONAL MODEL INFORMATION

FIGURE A1 Bar plot for the fivefold cross-validated performances for

each task. MDD = major depressive disorder; PLR = penalized logistic
regression model with elastic net penalty; SVM = support vector
machine; RF = random forest; AUC = area under the curve;
PCC = percentage correctly classified; RMSE = root mean squared error
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TABLE A1 List of the 39 features used in predictive modeling

Category Variable

Demographics Sex

Age

Gray matter volume
asymmetry of various
cortical regions (sMRI)

Pars triangularis

Pericalcarine

Precentral

Transverse temporal

Cuneus

Lingual

Paracentral

Cerebellum

Gray matter volume of
various cortical
regions (sMRI)

Left inferior temporal

Pars orbitalis

Frontal pole

Pars triangularis

Gray matter volume of
various subcortical
regions (sMRI)

Right choroid plexus

Volume (sMRI) Brainstem

Mean thickness of the
entire hemispheres
(sMRI)

Left mean thickness

Right mean thickness

Mean fractional
anisotropy of
various regions (dMRI)

Anterior corpus callosum

Left banks of the superior
temporal sulcus

Left inferior parietal

Left insula

Left lateral occipital

Left lateral orbitofrontal

Left medial orbitofrontal

Left middle temporal

Left pars triangularis

Left precuneus

Left transverse temporal

Left cerebellum

Right banks of the superior
temporal sulcus

Right caudal anterior cingulate

Right cuneus

Left entorhinal

Right fusiform

Right lateral orbitofrontal

Right lingual

Right parahippocampal

Right rostral anterior cingulate

20 YANG ET AL.


	 Development and evaluation of a multimodal marker of major depressive disorder
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Subjects
	2.2  Image acquisition: sMRI
	2.3  Image processing: sMRI
	2.4  Image acquisition: dMRI
	2.5  Image processing: dMRI
	2.6  Data preparation statistics
	2.6.1  Features
	2.6.2  Outcome measures
	2.6.2  Discrete measure
	2.6.2  Continuous measure

	2.6.3  The predictive modeling systems
	2.6.4  Validation


	3  RESULTS
	3.1  Binary classification for predicting MDD versus HC
	3.2  Ordinal classification for severity index: Severe MDD, mild MDD, and HC
	3.3  Prediction of Hamilton scores among patients with MDD
	3.4  Comparisons across models
	3.5  External validation on predicting MDD versus HC

	4  DISCUSSION
	4.1  Modeling/methodology
	4.2  Model results
	4.3  Limitations

	5  CONCLUSION
	5  ACKNOWLEDGMENTS
	5  Disclosure of Interests
	  REFERENCES
	  Additional Model Information




