36 research outputs found

    Keynote Address

    Get PDF

    Anisotropic Thermal Conduction and the Cooling Flow Problem in Galaxy Clusters

    Full text link
    We examine the long-standing cooling flow problem in galaxy clusters with 3D MHD simulations of isolated clusters including radiative cooling and anisotropic thermal conduction along magnetic field lines. The central regions of the intracluster medium (ICM) can have cooling timescales of ~200 Myr or shorter--in order to prevent a cooling catastrophe the ICM must be heated by some mechanism such as AGN feedback or thermal conduction from the thermal reservoir at large radii. The cores of galaxy clusters are linearly unstable to the heat-flux-driven buoyancy instability (HBI), which significantly changes the thermodynamics of the cluster core. The HBI is a convective, buoyancy-driven instability that rearranges the magnetic field to be preferentially perpendicular to the temperature gradient. For a wide range of parameters, our simulations demonstrate that in the presence of the HBI, the effective radial thermal conductivity is reduced to less than 10% of the full Spitzer conductivity. With this suppression of conductive heating, the cooling catastrophe occurs on a timescale comparable to the central cooling time of the cluster. Thermal conduction alone is thus unlikely to stabilize clusters with low central entropies and short central cooling timescales. High central entropy clusters have sufficiently long cooling times that conduction can help stave off the cooling catastrophe for cosmologically interesting timescales.Comment: Submitted to ApJ, 14 pages, 14 figure

    The Dynamics of Rayleigh-Taylor Stable and Unstable Contact Discontinuities with Anisotropic Thermal Conduction

    Full text link
    We study the effects of anisotropic thermal conduction along magnetic field lines on an accelerated contact discontinuity in a weakly collisional plasma. We first perform a linear stability analysis similar to that used to derive the Rayleigh-Taylor instability (RTI) dispersion relation. We find that anisotropic conduction is only important for compressible modes, as incompressible modes are isothermal. Modes grow faster in the presence of anisotropic conduction, but growth rates do not change by more than a factor of order unity. We next run fully non-linear numerical simulations of a contact discontinuity with anisotropic conduction. The non-linear evolution can be thought of as a superposition of three physical effects: temperature diffusion due to vertical conduction, the RTI, and the heat flux driven buoyancy instability (HBI). In simulations with RTI-stable contact discontinuities, the temperature discontinuity spreads due to vertical heat conduction. This occurs even for initially horizontal magnetic fields due to the initial vertical velocity perturbation and numerical mixing across the interface. The HBI slows this temperature diffusion by reorienting initially vertical magnetic field lines to a more horizontal geometry. In simulations with RTI-unstable contact discontinuities, the dynamics are initially governed by temperature diffusion, but the RTI becomes increasingly important at late times. We discuss the possible application of these results to supernova remnants, solar prominences, and cold fronts in galaxy clusters.Comment: 18 pages, 15 figures, submitted to MNRA

    Can conduction induce convection? The non-linear saturation of buoyancy instabilities in dilute plasmas

    Full text link
    We study the effects of anisotropic thermal conduction on low-collisionality, astrophysical plasmas using two and three-dimensional magnetohydrodynamic simulations. For weak magnetic fields, dilute plasmas are buoyantly unstable for either sign of the temperature gradient: the heat-flux-driven buoyancy instability (HBI) operates when the temperature increases with radius while the magnetothermal instability (MTI) operates in the opposite limit. In contrast to previous results, we show that, in the presence of a sustained temperature gradient, the MTI drives strong turbulence and operates as an efficient magnetic dynamo (akin to standard, adiabatic convection). Together, the turbulent and magnetic energies contribute up to ~10% of the pressure support in the plasma. In addition, the MTI drives a large convective heat flux, ~1.5% of rho c_s^3. These findings are robust even in the presence of an external source of strong turbulence. Our results on the nonlinear saturation of the HBI are consistent with previous studies but we explain physically why the HBI saturates quiescently by re-orienting the magnetic field (suppressing the conductive heat flux through the plasma), while the MTI saturates by generating sustained turbulence. We also systematically study how an external source of turbulence affects the saturation of the HBI: such turbulence can disrupt the HBI only on scales where the shearing rate of the turbulence is faster than the growth rate of the HBI. In particular, our results provide a simple mapping between the level of turbulence in a plasma and the effective isotropic thermal conductivity. We discuss the astrophysical implications of these findings, with a particular focus on the intracluster medium of galaxy clusters.Comment: 18 pages, 14 figures. Submitted to MNRA

    Turbulent Pressure Support in the Outer Parts of Galaxy Clusters

    Full text link
    We use three-dimensional MHD simulations with anisotropic thermal conduction to study turbulence due to the magnetothermal instability (MTI) in the intracluster medium (ICM) of galaxy clusters. The MTI grows on timescales of ~1 Gyr and is capable of driving vigorous, sustained turbulence in the outer parts of galaxy clusters if the temperature gradient is maintained in spite of the rapid thermal conduction. If this is the case, turbulence due to the MTI can provide up to 5-30% of the pressure support beyond r_500 in galaxy clusters, an effect that is strongest for hot, massive clusters. The turbulence driven by the MTI is generally additive to other sources of turbulence in the ICM, such as that produced by structure formation. This new source of non-thermal pressure support reduces the observed Sunyaev-Zel'dovich (SZ) signal and X-ray pressure gradient for a given cluster mass and introduces a cluster mass and temperature gradient-dependent bias in SZ and X-ray mass estimates of clusters. This additional physics may also need to be taken into account when estimating the matter power spectrum normalization, sigma-8, through simulation templates from the observed amplitude of the SZ power spectrum.Comment: Accepted to MNRAS Letters. In Pres

    The Effects of Anisotropic Viscosity on Turbulence and Heat Transport in the Intracluster Medium

    Full text link
    In the intracluster medium (ICM) of galaxy clusters, heat and momentum are transported almost entirely along (but not across) magnetic field lines. We perform the first fully self-consistent Braginskii-MHD simulations of galaxy clusters including both of these effects. Specifically, we perform local and global simulations of the magnetothermal instability (MTI) and the heat-flux-driven buoyancy instability (HBI) and assess the effects of viscosity on their saturation and astrophysical implications. We find that viscosity has only a modest effect on the saturation of the MTI. As in previous calculations, we find that the MTI can generate nearly sonic turbulent velocities in the outer parts of galaxy clusters, although viscosity somewhat suppresses the magnetic field amplification. At smaller radii in cool-core clusters, viscosity can decrease the linear growth rates of the HBI. However, it has less of an effect on the HBI's nonlinear saturation, in part because three-dimensional interchange motions (magnetic flux tubes slipping past each other) are not damped by anisotropic viscosity. In global simulations of cool core clusters, we show that the HBI robustly inhibits radial thermal conduction and thus precipitates a cooling catastrophe. The effects of viscosity are, however, more important for higher entropy clusters. We argue that viscosity can contribute to the global transition of cluster cores from cool-core to non cool-core states: additional sources of intracluster turbulence, such as can be produced by AGN feedback or galactic wakes, suppress the HBI, heating the cluster core by thermal conduction; this makes the ICM more viscous, which slows the growth of the HBI, allowing further conductive heating of the cluster core and a transition to a non cool-core state.Comment: Submitted to MNRAS. Comments are welcom

    The physics of galactic winds driven by active galactic nuclei

    Full text link
    Active galactic nuclei (AGN) drive fast winds in the interstellar medium of their host galaxies. It is commonly assumed that the high ambient densities and intense radiation fields in galactic nuclei imply short cooling times, thus making the outflows momentum-conserving. We show that cooling of high-velocity, shocked winds in AGN is in fact inefficient in a wide range of circumstances, including conditions relevant to ultra-luminous infrared galaxies (ULIRGs), resulting in energy-conserving outflows. We further show that fast energy-conserving outflows can tolerate a large amount of mixing with cooler gas before radiative losses become important. For winds with initial velocity v_in>~10,000 km s^-1, as observed in ultra-violet and X-ray absorption, the shocked wind develops a two-temperature structure. While most of the thermal pressure support is provided by the protons, the cooling processes operate directly only on the electrons. This significantly slows down inverse Compton cooling, while free free cooling is negligible. Slower winds with v_in~1,000 km s^-1, such as may be driven by radiation pressure on dust, can also experience energy-conserving phases but under more restrictive conditions. During the energy-conserving phase, the momentum flux of an outflow is boosted by a factor ~v_in/2v_s by work done by the hot post-shock gas, where v_s is the velocity of the swept-up material. Energy-conserving outflows driven by fast AGN winds (v_in~0.1c) may therefore explain the momentum fluxes Pdot>>L_AGN/c of galaxy-scale outflows recently measured in luminous quasars and ULIRGs. Shocked wind bubbles expanding normal to galactic disks may also explain the large-scale bipolar structures observed in some systems, including around the Galactic Center, and can produce significant radio, X-ray, and gamma-ray emission. [Abridged]Comment: 20 pages, 8 figures. MNRAS, in pres

    Towards an Economy of Higher Education

    Get PDF
    This paper draws a distinction between ways thinking and acting, and hence of policy and practice in higher education, in terms of different kinds of economy: economies of exchange and economies of excess. Crucial features of economies of exchange are outlined and their presence in prevailing conceptions of teaching and learning is illustrated. These are contrasted with other possible forms of practice, which in turn bring to light the nature of an economy of excess. In more philosophical terms, and to expand on the picture, economies of excess are elaborated with reference, first, to the understanding of alterity in the work of Emmanuel Levinas and, second, to the idea of Dionysian intensity that is to be found in Nietzsche. In the light of critical comment on some current directions in policy and practice, the implications of these ways of thinking for the administrator, the teacher and the student in higher education are explored

    Kepler eclipsing binary stars. VII. the catalogue of eclipsing binaries found in the entire Kepler data set

    Get PDF
    The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets
    corecore