24 research outputs found

    Methane seepage in a Cretaceous greenhouse world recorded by an unusual carbonate deposit from the Tarfaya Basin, Morocco

    Get PDF
    During the Cretaceous major episodes of oceanic anoxic conditions triggered large scale deposition of marine black shales rich in organic carbon. Several oceanic anoxic events (OAEs) have been documented including the Cenomanian to Turonian OAE 2, which is among the best studied examples to date. This study reports on a large limestone body that occurs within a black shale succession exposed in a coastal section of the Tarfaya Basin, Morocco. The black shales were deposited in the aftermath of OAE 2 in a shallow continental sea. To decipher the mode and causes of carbonate formation in black shales, a combination of element geochemistry, palaeontology, thin section petrography, carbon and oxygen stable isotope geochemistry and lipid biomarkers are used. The ¹³C-depleted biphytanic diacids reveal that the carbonate deposit resulted, at least in part, from microbially-mediated anaerobic oxidation of methane in the shallow subseafloor at a hydrocarbon seep. The lowest obtained δ¹³Ccarbonate values of −23.5‰ are not low enough to exclude other carbon sources than methane apart from admixed marine carbonate, indicating a potential contribution from in situ remineralization of organic matter contained in the black shales. Nannofossil and trace metal inventories of the black shales and the macrofaunal assemblage of the carbonate body reveal that environmental conditions became less reducing during the deposition of the background shales that enclose the carbonate body, but the palaeoenvironment was overall mostly characterized by high productivity and episodically euxinic bottom waters. This study reconstructs the evolution of a hydrocarbon seep that was situated within a shallow continental sea in the aftermath of OAE 2, and sheds light on how these environmental factors influenced carbonate formation and the ecology at the seep site

    First definitive record of Abelisauridae (Theropoda: Ceratosauria) from the Cretaceous Bahariya Formation, Bahariya Oasis, Western Desert of Egypt

    No full text
    Numerous non-avian theropod dinosaur fossils have been reported from the Upper Cretaceous (Cenomanian) Bahariya Formation, Bahariya Oasis, Western Desert of Egypt, but unambiguous materials of Abelisauridae have yet to be documented. Here we report Mansoura University Vertebrate Paleontology Center (MUVP) specimen 477, an isolated, wellpreserved tenth cervical vertebra of a medium-sized abelisaurid from the Bahariya Formation. The new vertebra shows affinities with those of other Upper Cretaceous abelisaurids from Madagascar and South America, such as Majungasaurus crenatissimus, Carnotaurus sastrei, Viavenator exxoni and a generically indeterminate Patagonian specimen (Museo Padre Molina specimen 99). Phylogenetic analysis recovers the Bahariya form within Abelisauridae, either in a polytomy of all included abelisaurids (strict consensus tree) or as an early branching member of the otherwise South American clade Brachyrostra (50% majority rule consensus tree). MUVP 477, therefore, represents the first confirmed abelisaurid fossil from the Bahariya Formation and the oldest definitive record of the clade from Egypt and northeastern Africa more generally. The new vertebra demonstrates the wide geographical distribution of Abelisauridae across North Africa during the middle Cretaceous and augments the already extraordinarily diverse large-bodied theropod assemblage of the Bahariya Formation, a record that also includes representatives of Spinosauridae, Carcharodontosauridae and Bahariasauridae
    corecore