22 research outputs found

    RBM5 Is a Male Germ Cell Splicing Factor and Is Required for Spermatid Differentiation and Male Fertility

    No full text
    Alternative splicing of precursor messenger RNA (pre-mRNA) is common in mammalian cells and enables the production of multiple gene products from a single gene, thus increasing transcriptome and proteome diversity. Disturbance of splicing regulation is associated with many human diseases; however, key splicing factors that control tissue-specific alternative splicing remain largely undefined. In an unbiased genetic screen for essential male fertility genes in the mouse, we identified the RNA binding protein RBM5 (RNA binding motif 5) as an essential regulator of haploid male germ cell pre-mRNA splicing and fertility. Mice carrying a missense mutation (R263P) in the second RNA recognition motif (RRM) of RBM5 exhibited spermatid differentiation arrest, germ cell sloughing and apoptosis, which ultimately led to azoospermia (no sperm in the ejaculate) and male sterility. Molecular modelling suggested that the R263P mutation resulted in compromised mRNA binding. Within the adult mouse testis, RBM5 localises to somatic and germ cells including spermatogonia, spermatocytes and round spermatids. Through the use of RNA pull down coupled with microarrays, we identified 11 round spermatid-expressed mRNAs as putative RBM5 targets. Importantly, the R263P mutation affected pre-mRNA splicing and resulted in a shift in the isoform ratios, or the production of novel spliced transcripts, of most targets. Microarray analysis of isolated round spermatids suggests that altered splicing of RBM5 target pre-mRNAs affected expression of genes in several pathways, including those implicated in germ cell adhesion, spermatid head shaping, and acrosome and tail formation. In summary, our findings reveal a critical role for RBM5 as a pre-mRNA splicing regulator in round spermatids and male fertility. Our findings also suggest that the second RRM of RBM5 is pivotal for appropriate pre-mRNA splicing.This work was supported by grants from the National Health and Medical Research Council (NHMRC) to DJ (#606503); the Australian Research Council (ARC) to MKO and CJO; the New South Wales Cancer Council, Cancer Institute New South Wales, Banque Nationale de Paris-Paribas Australia and New Zealand, RT Hall Trust, and the National Breast Cancer Foundation to CJO. DJ was an NHMRC Peter Doherty Postdoctoral Fellow (#384297). MKO and CJO are NHMRC Senior Research Fellows (#545805, #481310). CCG is an NHMRC Australia Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Polygenic Risk Modelling for Prediction of Epithelial Ovarian Cancer Risk

    Get PDF
    Funder: Funding details are provided in the Supplementary MaterialAbstractPolygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally-efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, “select and shrink for summary statistics” (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestry; 7,669 women of East Asian ancestry; 1,072 women of African ancestry, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestry. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38(95%CI:1.28–1.48,AUC:0.588) per unit standard deviation, in women of European ancestry; 1.14(95%CI:1.08–1.19,AUC:0.538) in women of East Asian ancestry; 1.38(95%CI:1.21-1.58,AUC:0.593) in women of African ancestry; hazard ratios of 1.37(95%CI:1.30–1.44,AUC:0.592) in BRCA1 pathogenic variant carriers and 1.51(95%CI:1.36-1.67,AUC:0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.</jats:p

    Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.

    Get PDF
    We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities

    Localization and significance of molecular chaperones, heat shock protein 1, and tumor rejection antigen gp96 in the male reproductive tract and during capacitation and acrosome reaction

    No full text
    Although the molecular basis of sperm-oocyte interaction is unclear, recent studies have implicated two chaperone proteins, heat shock protein 1 (HSPD1; previously known as heat shock protein 60) and tumor rejection antigen gp96 (TRA1; previously known as endoplasmin), in the formation of a functional zona-receptor complex on the surface of mammalian spermatozoa. The current study was undertaken to investigate the expression of these chaperones during the ontogeny of male germ cells through spermatogenesis, epididymal sperm maturation, capacitation, and acrosomal exocytosis. In testicular sections, both HSPD1 and TRA1 were closely associated with the mitochondria of spermatogonia and primary spermatocytes. However, this labeling pattern disappeared from the male germ line during spermiogenesis to become undetectable in testicular spermatozoa. Subsequently, these chaperones could be detected in epididymal spermatozoa and in previously unreported "dense bodies" in the epididymal lumen. The latter appeared in the precise region of the epididymis (proximal corpus), where spermatozoa acquire the capacity to recognize and bind to the zona pellucida, implicating these structures in the functional remodeling of the sperm surface during epididymal maturation. Both HSPD1 and TRA1 were subsequently found to become coexpressed on the surface of live mouse spermatozoa following capacitation in vitro and were lost once these cells had undergone the acrosome reaction, as would be expected of cell surface molecules involved in sperm-egg interaction. These data reinforce the notion that these chaperones are intimately involved in the mechanisms by which mammalian spermatozoa both acquire and express their ability to recognize the zona pellucida

    Immune regulation of ovarian development: programming by neonatal immune challenge

    Get PDF
    Neonatal immune challenge by administration of lipopolysaccharide (LPS) produces enduring alterations in the development and activity of neuroendocrine, immune and other physiological systems. We have recently reported that neonatal exposure to an immune challenge by administration of LPS results in altered reproductive development in the female Wistar rat. Specifically, LPS-treated animals exhibited diminished ovarian reserve and altered reproductive lifespan. In the current study, we examined the cellular mechanisms that lead to the previously documented impaired ovulation and reduced follicular pool. Rats were administered intraperitoneally either 0.05mg/kg of LPS (Salmonella Enteritidis) or an equivalent volume of non-pyrogenic saline on postnatal days (PNDs) 3 and 5, and ovaries were obtained on PND 7. Microarray analysis revealed a significant upregulation in transcript expression (2-fold change; p&lt;.05) for a substantial number of genes in the ovaries of LPS-treated animals, implicated in immune cell signalling, inflammatory responses, reproductive system development and disease. Several canonical pathways involved in immune recognition were affected by LPS treatment, such as nuclear factor-κB (NF-kB) activation and LPS-stimulated mitogen-activated protein kinase (MAPK) signalling. Real-time PCR analysis supported the microarray results. Protein expression analysis of several components of the MAPK signalling pathway revealed a significant upregulation in the expression of Toll-like receptor 4 (TLR4) in the neonatal ovary of LPS-treated animals. These results indicate that neonatal immune challenge by administration of LPS has a direct effect on the ovary during the sensitive period of follicular formation. Given the pivotal role of inflammatory processes in the regulation of reproductive health, our findings suggest that early life immune activation via TLR signalling may have significant implications for the programming of ovarian development and fertility

    RBM5 is a male germ cell splicing factor and is required for spermatid differentiation and male fertility

    Get PDF
    Alternative splicing of precursor messenger RNA (pre-mRNA) is common in mammalian cells and enables the production of multiple gene products from a single gene, thus increasing transcriptome and proteome diversity. Disturbance of splicing regulation is associated with many human diseases; however, key splicing factors that control tissue-specific alternative splicing remain largely undefined. In an unbiased genetic screen for essential male fertility genes in the mouse, we identified the RNA binding protein RBM5 (RNA binding motif 5) as an essential regulator of haploid male germ cell pre-mRNA splicing and fertility. Mice carrying a missense mutation (R263P) in the second RNA recognition motif (RRM) of RBM5 exhibited spermatid differentiation arrest, germ cell sloughing and apoptosis, which ultimately led to azoospermia (no sperm in the ejaculate) and male sterility. Molecular modelling suggested that the R263P mutation resulted in compromised mRNA binding. Within the adult mouse testis, RBM5 localises to somatic and germ cells including spermatogonia, spermatocytes and round spermatids. Through the use of RNA pull down coupled with microarrays, we identified 11 round spermatid-expressed mRNAs as putative RBM5 targets. Importantly, the R263P mutation affected pre-mRNA splicing and resulted in a shift in the isoform ratios, or the production of novel spliced transcripts, of most targets. Microarray analysis of isolated round spermatids suggests that altered splicing of RBM5 target pre-mRNAs affected expression of genes in several pathways, including those implicated in germ cell adhesion, spermatid head shaping, and acrosome and tail formation. In summary, our findings reveal a critical role for RBM5 as a pre-mRNA splicing regulator in round spermatids and male fertility. Our findings also suggest that the second RRM of RBM5 is pivotal for appropriate pre-mRNA splicing

    RBM5 RRM2 is required for appropriate pre-mRNA splicing.

    No full text
    <p>(<b>A</b>) Relative abundance of <i>St5</i>, <i>Asb1</i> and <i>Plg2g10</i> is significantly increased in the RBM5 pulled down (RBM5-PD) samples compared to that of IgG-PD controls. Error bars = S.D. (standard deviation, <i>n</i> = 3 sets of each pull down). * indicates statistical significance (p&lt;0.05, t-test). (<b>B–D</b>) The R263P mutation in the RRM2 of RBM5 leads to aberrant splicing of <i>St5</i>, <i>Asb1</i> and <i>Pla2g10</i>. Black bars represent exons and open bars represent UTRs. FL: full-length, ex: exon, Δ ex 3 refers to exon 3 skipping, Δ ex 3+ex 4 refers to exon 3 and exon 4 skipping, and + intron refers to intron retention. (<b>E</b>) Splicing defects of <i>Kif17</i>, <i>Anks3</i>, <i>Rangap1</i>, <i>Nfx1</i> and <i>Cftr</i>. Transcripts with obvious shift in their relative intensities are indicated by arrows.</p
    corecore