51 research outputs found

    Astrophysical applications of gravitationally lensed quasars:from dark matter halos to the structure of quasar accretion disks

    Get PDF
    Gravitational lensing describes how light is deflected as it passes in the vicinity of a mass distribution. The amplitude of the deflection is proportional to the mass of the deflector, called "gravitational lens", and is generally weak, even for large masses. The faintness of this phenomenon explains why gravitational lensing remained essentially unobserved until the late 1970s (only gravitational lensing by the Sun has been observed during the solar eclipse of 1919). Before that time, gravitational lensing was considered merely as a theoretical curiosity. However, the situation dramatically changed with the discovery of the first extragalactic gravitational lens in 1979. Since then, together with the technological progress of astronomical instruments, gravitational lensing has turned from a curiosity into a powerful tool to address important astrophysical and cosmological questions. The present thesis focuses on applications related to gravitationally lensed quasars. Quasars are active galactic nuclei, where matter is heated up as it spirals down onto the central supermassive black hole. When a galaxy is located on the line of sight to a distant quasar, it acts as a gravitational lens and produces multiple images of this background source. The light of the quasar follows different paths for each of its images. Thus, variations of the intrinsic quasar luminosity are observed at different times in each image. The time delays between the images can be used to determine the Hubble constant H0, because they are inversely proportional to H0. This constant describes the current expansion rate of the Universe, and is one of the fundamental parameters of cosmological models. Many efforts have been spent over the years to determine H0, but its value is still poorly constrained. Gravitational lensing has the potential to noticeably decrease the uncertainty of H0. In practice, this requires regular and long-term monitoring of lensed quasars. We have run a series of numerical simulations to both optimize the available telescope time, and measure the time delays with an accuracy of a few percent. The results of these simulations are presented in the form of compact plots to be used to optimize the observational strategy of present and future monitoring programs. Once the time delays are measured, one can infer estimates of H0, provided several other observational constraints are available. A key element to accurately convert time delays into H0 is the redshift of the lensing galaxy. These redshift measurements are difficult because lensing galaxies are generally hidden in the glare of the much brighter quasar images. As a consequence, lens redshifts are often poorly constrained or even completely unknown. We have acquired spectroscopic data of sixteen lensing galaxies with the Very Large Telescope located in Chile. In combination with a powerful deconvolution algorithm, we determine the redshift of these sixteen lensing galaxies, which represents about 25% of all currently known quasar lensing galaxies. These results are useful for both H0 determinations and statistical studies of gravitational lenses, which can be used to provide new constraints on cosmological parameters. While the first part of this thesis focuses on the acquisition of observational constraints for the lens models, the main part consists in using the phenomenon of microlensing to determine the energy profile (or spatial structure) of quasar accretion disks. Microlensing is produced by the stars located in the lensing galaxy. These stars act as secondary lenses, and are called microlenses. Since the stars are moving in the galaxy, they induce flux and color variations in the images of the lensed quasar. These effects can be used as a natural telescope to probe the still mysterious inner structures of quasars with a spatial resolution about ten thousand times better than the capacities of current astronomical instruments, including the Very Large Telescope Interferometer. We present a three-year long spectrophotometric monitoring of the lensed quasar QSO 2237+0305, also known as the Einstein Cross, conducted at the Very Large Telescope. This monitoring reveals significant microlensing-induced variations in the spectra of the quasar images. In a subsequent analysis, we find that the source responsible for the optical and ultraviolet continuum has an energy profile well reproduced by a power-law R α λζ with ζ = 1.2 ± 0.3, where R is the size of the source emitting at wavelength λ. This agrees with the predictions of the standard thin accretion disk model and is, so far, the most accurate determination of a quasar energy profile. As a complement to our microlensing study, we have obtained high spectral and spatial resolution observations of the lensing galaxy of QSO 2237+0305. Our spectroscopic data are acquired with the SINFONI, FLAMES, and FORS2 spectrographs of the Very Large Telescope. We describe the reduction of these data, and provide the currently best and most complete determination of the kinematics of a gravitational lens. The comparison of our data with previously published dynamical models suggests that those may have overestimated the mass of the galaxy bulge. Thus, new and more sophisticated models are required. These models, combined with gravitational lensing, will provide two independent constraints on the mass distribution. This will allow to better determine the quantity and distribution of dark matter in this lensing galaxy, and especially in its extended halo

    KrĂŒppel-like factor 8 (KLF8) is expressed in gliomas of different WHO grades and is essential for tumor cell proliferation.

    Get PDF
    KrĂŒppel-like factor 8 (KLF8) has only recently been identified to be involved in tumor cell proliferation and invasion of several different tumor entities like renal cell carcinoma, hepatocellular carcinoma and breast cancer. In the present study, we show for the first time the expression of KLF8 in gliomas of different WHO grades and its functional impact on glioma cell proliferation. In order to get information about KLF8-mRNA regulation qPCR was performed and did not reveal any significant difference in samples (n = 10 each) of non-neoplastic brain (NNB), low-grade gliomas (LGG, WHO°II) and glioblastomas (GBM, WHO°IV). Immunohistochemistry of tissue samples (n = 7 LGG, 11 AA and 12 GBM) did not show any significant difference in the fraction of KLF8-immunopositive cells of all analyzed cells in LGG (87%), AA (80%) or GBM (89%). Tissue samples from cerebral breast cancer metastasis, meningiomas but also non-neoplastic brain demonstrated comparable relative cell counts as well. Moreover, there was no correlation between KLF8 expression and the expression pattern of the assumed proliferation marker Ki67, which showed high variability between different tumor grade (9% (LGG), 6% (AA) and 15% (GBM) of Ki67-immunopositive cells). Densitometric analysis of Western blotting revealed that the relative amount of KLF8-protein did also not differ between the highly aggressive and proliferative GBM (1.05) compared to LGG (0.93; p<0.05, studens t-test). As demonstrated for some other non-glial cancer entities, KLF8-knockdown by shRNA in U87-MG cells confirmed its functional relevance, leading to an almost complete loss of tumor cell proliferation. Selective blocking of KLF8 might represent a novel anti-proliferative treatment strategy for malignant gliomas. Yet, its simultaneous expression in non-proliferating tissues could hamper this approach

    An exploratory search for z ≳ 6 quasars in the UKIDSS early data release

    Get PDF
    We conducted an exploratory search for quasars at z ~ 6-8, using the Early Data Release (EDR) from the United Kingdom Infrared Deep Sky Survey (UKIDSS) cross-matched to panoramic optical imagery. High-redshift quasar candidates are chosen using multi-color selection in i, z, Y, J, H, and K bands. After removal of apparent instrumental artifacts, our candidate list consisted of 34 objects. We further refined this list with deeper imaging in the optical for ten of our candidates. Twenty-five candidates were followed up spectroscopically in the near-infrared and in the optical. We confirmed 25 of our spectra as very low-mass main-sequence stars or brown dwarfs, which were indeed expected as the main contaminants of this exploratory search. The lack of quasar detection is not surprising: the estimated probability of finding a single z > 6 quasar down to the limit of UKIDSS in 27.3 deg^2 of the EDR is <5%. We find that the most important limiting factor in this work is the depth of the available optical data. Experience gained in this pilot project can help refine high-redshift quasar selection criteria for subsequent UKIDSS data releases

    Impacts of rising temperatures and farm management practices on global yields of 18 crops

    Get PDF
    Understanding the impact of changes in temperature and precipitation on crop yields is a vital step in developing policy and management options to feed the world. As most existing studies are limited to a few staple crops, we implemented global statistical models to examine the influence of weather and management practices on the yields of 18 crops, accounting for 70% of crop production by area and 65% by calorific intake. Focusing on the impact of temperature, we found considerable heterogeneity in the responses of yields across crops and countries. Irrigation was found to alleviate negative implications from temperature increases. Countries where increasing temperature causes the most negative impacts are typically the most food insecure, with the lowest calorific food supply and average crop yield. International action must be coordinated to raise yields in these countries through improvement and modernization of agricultural practices to counteract future adverse impacts of climate change

    DAMP Signaling is a Key Pathway Inducing Immune Modulation after Brain Injury

    Get PDF
    Acute brain lesions induce profound alterations of the peripheral immune response comprising the opposing phenomena of early immune activation and subsequent immunosuppression. The mechanisms underlying this brain-immune signaling are largely unknown. We used animal models for experimental brain ischemia as a paradigm of acute brain lesions and additionally investigated a large cohort of stroke patients. We investigated the inflammatory potency of HMGB1 and its signaling pathways by immunological in vivo and in vitro techniques. Features of the complex behavioral sickness behavior syndrome were characterized by homecage behavior analysis. HMGB1 downstream signaling, particularly with RAGE, was studied in various transgenic animal models and by pharmacological blockade. Our results indicate that HMGB1 was released from the ischemic brain in the hyperacute phase of stroke in mice and patients. Cytokines secreted in the periphery in response to brain injury induced sickness behavior, which could be abrogated by inhibition of the HMGB1-RAGE pathway or direct cytokine neutralization. Subsequently, HMGB1-release induced bone marrow egress and splenic proliferation of bone marrow-derived suppressor cells, inhibiting the adaptive immune responses in vivo and vitro. Furthermore, HMGB1-RAGE signaling resulted in functional exhaustion of mature monocytes and lymphopenia, the hallmarks of immune suppression after extensive ischemia. This study introduces the HMGB1-RAGE-mediated pathway as a key mechanism explaining the complex postischemic brain-immune interactions

    Crucial Role of Nucleic Acid Sensing via Endosomal Toll-Like Receptors for the Defense of Streptococcus pyogenes in vitro and in vivo

    Get PDF
    Streptococcus pyogenes is a major human pathogen causing a variety of diseases ranging from common pharyngitis to life-threatening soft tissue infections and sepsis. Microbial nucleic acids, especially bacterial RNA, have recently been recognized as a major group of pathogen-associated molecular patterns (PAMPs) involved in the detection of Streptococcus pyogenes via endosomal Toll-like receptors (TLRs) in vitro. However, the individual contribution and cooperation between TLRs as well as cell-type and strain specific differences in dependency on nucleic acid detection during S. pyogenes infection in vitro have not been clarified in detail. Moreover, the role of particularly bacterial RNA for the defense of S. pyogenes infection in vivo remains poorly defined. In this study, we report that in all investigated innate immune cells involved in the resolution of bacterial infections, including murine macrophages, dendritic cells and neutrophils, recognition of S. pyogenes strain ATCC12344 is almost completely dependent on nucleic acid sensing via endosomal TLRs at lower MOIs, whereas at higher MOIs, detection via TLR2 plays an additional, yet redundant role. We further demonstrate that different S. pyogenes strains display a considerable inter-strain variability with respect to their nucleic acid dependent recognition. Moreover, TLR13-dependent recognition of S. pyogenes RNA is largely non-redundant in bone marrow-derived macrophages (BMDMs), but less relevant in neutrophils and bone marrow-derived myeloid dendritic cells (BMDCs) for the induction of an innate immune response in vitro. In vivo, we show that a loss of nucleic acid sensing blunts early recognition of S. pyogenes, leading to a reduced local containment of the bacterial infection with subsequent pronounced systemic inflammation at later time points. Thus, our results argue for a crucial role of nucleic acid sensing via endosomal TLRs in defense of S. pyogenes infection both in vitro and in vivo

    Potential impacts on ecosystem services of land use transitions to second-generation bioenergy crops in GB

    Get PDF
    We present the first assessment of the impact of land use change (LUC) to second-generation (2G) bioenergy crops on ecosystem services (ES) resolved spatially for Great Britain (GB). A systematic approach was used to assess available evidence on the impacts of LUC from arable, semi-improved grassland or woodland/forest, to 2G bioenergy crops, for which a quantitative ‘threat matrix’ was developed. The threat matrix was used to estimate potential impacts of transitions to either Miscanthus, short-rotation coppice (SRC, willow and poplar) or short-rotation forestry (SRF). The ES effects were found to be largely dependent on previous land uses rather than the choice of 2G crop when assessing the technical potential of available biomass with a transition from arable crops resulting in the most positive effect on ES. Combining these data with constraint masks and available land for SRC and Miscanthus (SRF omitted from this stage due to lack of data), south-west and north-west England were identified as areas where Miscanthus and SRC could be grown, respectively, with favourable combinations of economic viability, carbon sequestration, high yield and positive ES benefits. This study also suggests that not all prospective planting of Miscanthus and SRC can be allocated to agricultural land class (ALC) ALC 3 and ALC 4 and suitable areas of ALC 5 are only minimally available. Beneficial impacts were found on 146 583 and 71 890 ha when planting Miscanthus or SRC, respectively, under baseline planting conditions rising to 293 247 and 91 318 ha, respectively, under 2020 planting scenarios. The results provide an insight into the interplay between land availability, original land uses, bioenergy crop type and yield in determining overall positive or negative impacts of bioenergy cropping on ecosystems services and go some way towards developing a framework for quantifying wider ES impacts of this important LUC

    Gravitational lensing of quasars

    No full text
    The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher resolutions than those accessible with the largest telescopes. This book intends to give an overview of the current status of research in the field of gravitationally lensed quasars. It also gives some insights about the way this research is conducted in practice, and presents real data and results obtained with several high-technology instruments of the Very Large Telescope of the European Southern Observatory.The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced - this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, GravItational Lensing of Quasars describes active galactic nuclei, the theory
    • 

    corecore