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ABSTRACT  26 

Agriculture is exposed to weather variation, with implications for food security, land 27 

allocation, trade and economic activity. Understanding the impact of changes in temperature 28 

and precipitation on crop yields is a vital step in developing policy and management options 29 

to feed the world over the coming century. As the current literature has focused on a few 30 

staple crops, we implement global statistical models to examine the influence of weather and 31 

management practices on yields of 18 crops, accounting for 70% of crop production by area 32 

and 65% of calorific intake.  We focus on the impact of temperature and find considerable 33 

heterogeneity in the responses of yields across crops and countries, by identifying winners 34 

and losers from warming trends. Irrigation is found to alleviate negative implications from 35 

temperature increases. Countries where increasing temperature cause the most negative 36 

impacts are typically  those which are the most food insecure, having the lowest calorific food 37 

supply and the lowest crop yield. Our results suggest that, in these countries, it will be 38 

important to co-ordinate international actions to raise yields through improvement and 39 

modernization of agricultural practices to counteract future adverse impacts of climate 40 

change. 41 
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INTRODUCTION 49 

As part of the 17 UN Sustainable Development Goals (UN SDG), governments have agreed a 50 

target to end hunger and ensure access to sufficient, nutritious food by 2030 for the 850 51 

million people globally who are classified as undernourished (UN 2015). Given their 52 

interlinked nature (Nilsson et al. 2016), failure to reach this target risks undermining many 53 

other SDGs. Achieving food security represent a significant challenge, bearing in mind 54 

increases in global population, rising levels of affluence, a shift towards diets consumed in 55 

OECD countries, and climate change (Alexander et al. 2016, Fujimori et al. 2019, Pastor et al. 56 

2019, Stehfest et al. 2019). Indeed, the global food production system is particularly 57 

vulnerable to climate change, directly through the impact of temperature and precipitation 58 

(Agnolucci and De Lipsis 2019, Challinor et al. 2014), and indirectly through competition for 59 

land for negative emissions technologies and afforestation (Fuss et al. 2016, Holland et al 60 

2019). 61 

As the effect of climate change on crop yield is an established concern for global food security 62 

(Lobell and Asseng 2017), the impact of historical variation in weather has provided valuable 63 

insights (Challinor et al. 2014, Lobell et al. 2011, Schauberger et al. 2017, Moore and Lobell 64 

2015), with both process-based and statistical models reaching similar conclusions about the 65 

impact of future climate (Liu et al 2016, Lobell and Asseng 2017 and Moore et al. 2017). As 66 

the current literature has focused on a few staple crops, there is an identified need to broaden 67 

our understanding across a wider range of crop types (Ciscar et al. 2018). The current study 68 

makes a substantial contribution by implementing statistical modelling to assess the impact 69 

of weather variation on crop yield for 18 crops. The empirical literature has primarily focused 70 

on the weather impact six major crops specifically wheat, maize and soybeans (Lobell et al. 71 
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2011, Lobell and Field 2007 and Schauberger et al. 2017), rice (Lobell et al. 2011, Lobell and 72 

Field 2007), barley (Moore and Lobell 2014, 2015 and Schauberger et al. 2017) and sugar beet 73 

(Moore and Lobell 2014, 2015).  Our analysis extends this to include cassava, cotton, 74 

groundnuts, millet, oats, potatoes, pulses, rapeseed, rye, sorghum,  sunflower and sweet 75 

potatoes. Together these crops represent 70% of the global crop area (Monfreda et al. 2008) 76 

and around 65% of global calorific intake.  We extend the approach of Lobell et al. (2011) by 77 

modelling a much wider set of crops and accounting for additional factors affecting crop yield, 78 

including pesticides, fertilisers and irrigation, to provide insights into the role of agronomy in 79 

ameliorating the impacts of changing climate (Rockström and Falkenmark 2015). We focus 80 

discussion on the effect of temperature, as the empirical relationship of crop yield with 81 

temperature is much better understood than with other weather factors (Lobell and Asner 82 

2003) and, in some cases, temperature was found to be the predominant factor in explaining 83 

crop yield variability (Lobell and Burke 2008). 84 

RESULTS 85 

MARGINAL IMPACT AND OPTIMAL GROWING CONDITIONS. We estimated an inverted U-86 

shaped relationship between temperature and crop yields for all 18 crops, with the values for 87 

the optimal temperature reflecting credible conditions of crop production (Table SI1). 88 

Statistical significant estimates for precipitation are harder to achieve, also reflecting previous 89 

results (Lobell and Tebaldi 2014, 2018). In 10 out of the 18 crops assessed in this study, an 90 

increase of 10 mm in precipitation induces a decrease in the yields, evaluated at the global 91 

mean, while in the remaining crops the impact is positive. Analysis of the impact of a 1°C rise 92 

on the set of 12 crops rarely assessed in the literature demonstrate that the majority of 93 
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countries growing cassava, cotton, groundnuts, millet, oats, pulses and rye experience 94 

negative impacts from a 1°C increase in temperature.  However, in this novel set of 12 crops, 95 

those with the highest levels of global consumption tend to be positively affected by a 1°C 96 

increase in temperature (potatoes, sweet potatoes, rapeseed and sorghum). Quite 97 

importantly considering the focus of the discussion below on existing level of productivity and 98 

food security, three crops widely consumed in developing countries tend to be either 99 

positively affected (sorghum and sweet potatoes) or suffer a small reduction in the yield 100 

(cassava) in presence of a 1°C increase. It is worth mentioning that the marginal effect 101 

described here assumes no changes in other factors when in reality, changes in temperature 102 

are likely to occur in presence of changes in other factors, such as precipitation. In some case, 103 

changes in temperature considered here could imply lack of analogue historical climatic 104 

conditions, as discussed by Pugh et al (2016), with increased uncertainty in relation the 105 

computed impact, as extrapolation occurs outside of the sample used in the estimation.  106 

Our results support the role of adaptation in global agriculture, as we demonstrate that 107 

agricultural management practices such as irrigation can ameliorate the negative impacts on 108 

crop productivity. Pesticides and fertilisers are generally found to enhance crop productivity. 109 

The use of pesticides has a positive impact on the yield of about half of the crops in our 110 

sample, i.e. potatoes, pulses, rice, sugar beet, sunflower, sweet potatoes and wheat. Use of 111 

fertilisers contribute to increasing yields of sugar beet, sunflower and sweet potatoes. The 112 

impact of pesticides and fertiliser is modelled through a linear approximation without 113 

allowing for interaction with other factor such as temperature. 114 

Figure 1 illustrates the functional relationship between crop yield of temperature, using one 115 

of this novel crops, cassava, as an example, in countries with low (black curve) and high 116 

Commented [PA1]: I added this to clarify why this point is 
in my view not a repetition. Perhaps one could express it 
better though  

Commented [HR2]: Is this slightly repetitive of the previous 
sentence?  
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irrigation (red curve). The curves are obtained by assigning value zero to the non-temperature 117 

variables in Table S1 (except irrigation), as using a different value for those variables would 118 

affect only the level of the yield but not the shape of the yield-temperature relationship. In 119 

the figure one can observe the gently sloping curves implying a relatively small variation in 120 

the marginal effect of temperature, i.e. the first derivative of the red an black curves. In fact, 121 

the impact of a 1°C increase in temperature across the globe varies between -3% and 1% in 122 

both the low-irrigated and high irrigated-countries. Irrigation allows higher optimal 123 

temperature, i.e. the vertex of the parabolas in the figure. These are about 26°C in countries 124 

with high levels of irrigation compared to about 20.5°C in the remaining countries. 125 

Estimated optimal temperatures tend to occur near the global mean of a number f crops, see 126 

graphs in column A of Figure 2, implying that warming temperatures will deliver, at least 127 

initially, beneficial increases in the yield in some of the growing countries. The number of 128 

countries benefiting from temperature rises however decreases with the size of the rise, as 129 

more and more countries are pushed beyond  the optimal level of temperature. A more 130 

detailed presentation of our results from the estimation of statistical crop yield models can 131 

be found in the Supplemental Information. 132 

Commented [AP3]: Was there any text change.  Nice to 
show that you’ve made some (even very) change in the MS, 
to show you have addressed the comment. 

Commented [PA4R3]: Should be clear based on track 
changes… 
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 133 

Figure 1. Functional relationship between temperature and crop yield of cassava . The red dots indicate the 134 
global mean (middle point) and the points which are 4°C colder and warmer than the global mean. The marginal 135 
effect of temperature increasing 1°C is indicated at these three points in column A of Figure 2. The functional 136 
relationship is indicated by the red curve when irrigation is low,  and the black curve when irrigation is high. 137 
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 138 

Figure 2a. Column A: Functional relationship between level of temperature and yield for the crops 139 
assessed in this study. The global temperature mean computed over 1986-2012 in the countries 140 
cultivating a specific crop is indicated by the central dot and vertical dashed line. The other two dots 141 
indicate temperatures 4 °C warmer and 4 °C colder than the global mean. The percentage next to the 142 
dots indicate the marginal effect, as explained in Figure 1. Column B: geographical distribution of the 143 
marginal effect related to a 1°C temperature rise. The colours indicate the percentage change in the 144 
crop yield for a country expected as a consequence of a change in 1°C. The range of the colour scale 145 
reflects the marginal sensitivity to temperature estimated in our study. Column C: frequency 146 
distribution of crop yield (kg/ha) by country with the marginal effect of 1°C temperature. For each 147 
point in the bars of the histogram, the colour points out the value of the marginal effect by using the 148 
colour scale in column B. Column D: frequency distribution of crop yield (kg/ha) by average calories 149 
intake (kcal/capita/day), using the same colour scheme as the one described for graphs in column C. 150 
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 151 

Figure 2b. Functional relationship between temperature and crop yield (column A), country-level 152 
marginal effect of temperature (column B), and distribution of country-level marginal effect by crop 153 
yield and calories consumption (column C and D respectively). More details can be found in the 154 
caption of Figure 2a. 155 
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 156 

Figure 2c. Functional relationship between temperature and crop yield (column A), country-level 157 
marginal effect of temperature (column B), and distribution of country-level marginal effect by crop 158 
yield and calories consumption (column C and D respectively). More details can be found in the 159 
caption of Figure 2a. 160 
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 161 

Figure 2d. Functional relationship between temperature and crop yield (column A), country-level 162 
marginal effect of temperature (column B), and distribution of country-level marginal effect by crop 163 
yield and calories consumption (column C and D respectively). More details can be found in the 164 
caption of Figure 2a. 165 
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 166 

Figure 2e. Functional relationship between temperature and crop yield (column A), country-level 167 
marginal effect of temperature (column B), and distribution of country-level marginal effect by crop 168 
yield and calories consumption (column C and D respectively). More details can be found in the 169 
caption of Figure 2a. 170 

HETEROGENEOUS MARGINAL IMPACT OF TEMPERATURE ACROSS THE GLOBE. Major crops 171 

tend to be negatively affected by a 1°C increase, as a 2.8%, 2.6% and 2.4% decrease in the 172 

yield is estimated for rice, maize and wheat, when evaluated at the global mean temperature 173 

of each crop. Yield of potatoes and soybeans, on the other hand,  increases by 1.5% and 2.2%. 174 

Comparison of marginal effect at the global mean is reductive as the effect of temperature 175 

varies across countries, as discussed in the Supplemental Information. Winners and losers 176 

from raising temperatures can be identified by evaluating the marginal effect of 1C increase 177 

from the mean observed in each country over the 1986-2012 sample (see Methods). The 178 

maps in column B of Figure 2 clarify that most countries are negatively (red countries) instead 179 

of being positively affected (blue countries). Maize, oats, pulses and wheat are widely 180 

impacted by rising temperatures, as yield decreases in almost all countries while potatoes, 181 

sorghum, soybeans and sugar beet overall benefit from rising temperatures. The plots in 182 

column B of Figure 2 also show the sensitivity of different crops to increases in the 183 

temperature. Ranges as wide as 30 percentage point can be observed in the case of millet, 184 

pulses, rapeseed, rice ad rye.  Conversely, cassava, oats and potatoes are among the crops 185 
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least affected by a 1C increase, with the range of marginal impact being under 10% 186 

percentage points in all cases. However, crops with a highly diverse marginal impact of 187 

temperature tend have a much smaller range for the great majority of countries where crops 188 

are grown. As an example, the range of the marginal impact in 80% of the countries where 189 

rice is grown is only half the width shown in Figure 2.  190 

IMPACT ON FOOD SECURITY AND PRODUCTIVITY. The wide productivity differences across 191 

countries will be exacerbated by rising temperatures, unless corrective action is taken. We 192 

explore this by assessing the relationship between prevailing yield and the marginal effect of 193 

temperature, as shown in column C of Figure 2. The highest positive marginal effects are quite 194 

scattered throughout the distribution of crop yield, while the most negative impacts tend to 195 

be in countries, such as those in sub-Saharan Africa, that have not benefited from the green 196 

revolution (Oladele et al. 2016). This is particularly strong in the case of barley, maize, millet, 197 

pulses, rice and wheat. A similar pattern can be observed in the case of the relationship 198 

between the daily intake of calories and the marginal impact of temperature – see column D 199 

of Figure 2, as most of the countries which are worst affected by warming temperatures have 200 

very low daily calorific intake. This is a concerning finding, as the countries with the worst 201 

level of food security (as measured by the daily intake of calories) are also worst affected by 202 

rising temperature.  203 

DISCUSSION   204 

CROP DEPENDENCE ON TEMPERATURE AND AGRONOMIC PRACTICE. Weather variables 205 

significantly contribute to yield variability for the 18 crops studied here, confirming results 206 

from existing global studies focusing on a maize, rice , soybeans and wheat (Frieler et al 2017; 207 
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Lobell and Tebaldi 2014 and Lobell et al. 2011). Potato, the most widely produced non-grain 208 

crop in the world, sorghum and soybeans were found resilient to moderate increases in 209 

temperature, confirming previous results in the case of soybeans (Araji et al. 2018). Estimated 210 

models show the importance of irrigation in determining the impact of weather variables 211 

across countries for a number of the crops modelled in this study. In five of the modelled 212 

crops, irrigation implies higher optimal temperatures and more positive impact of rising 213 

temperatures, confirming studies focused on the USA, such as Li and Troy (2018), Schauberger 214 

et al. (2017) and Troy et al. (2015). Irrigation can affect crop transpiration through maximising 215 

the functioning of the stomata, enhancing photosynthetic and yield efficiency (Fara et al. 216 

2019), contain evapotranspiration demand related to heat stress (Lobell et al. 2013) and have 217 

cooling effects on the canopy temperature, reducing the  impact of heat and drought stress 218 

on crop yield (Siebert et al. 2014). Some producers facing negative impact of temperature, 219 

e.g. Israel and Greece, have invested in irrigation, so that the effects of  rising temperatures 220 

would have been worse without such schemes. Expansion of irrigation may be possible in 221 

some cases but in many countries, notably in Africa, expansion of land under irrigation is 222 

impractical or impossible (Rockström and Falkenmark 2015) but alternative options for the 223 

management of rainfall (e.g. through collection and soil management) exist and should be 224 

integrated into agricultural policy where appropriate (Rockström and Falkenmark 2015). 225 

Countries with very low yields use a low amount of pesticides and fertilisers, while highly 226 

productive countries tend to consume higher than the average pesticides and fertilisers. In 227 

the case of wheat, for example,  the yield in the 10 countries with the highest level of 228 

pesticides (4,177 kg/ha) is more than double the level (1,857 kg/ha) observed in the 10 229 

countries with the lowest consumption. As pesticides and fertilisers have a strong effect in a 230 

number of crops, some of the difference in the yield across countries could be closed by 231 



15 
 

increasing their use, although this may be associated with other environmental challenges. 232 

We observe that high use of fertilisers and pesticides may serve to even out the effect of 233 

management intensity across countries and called upon to compensate for decreases in the 234 

yield brought about by rising temperatures. Although not explored in this study, interaction 235 

between marginal impact of temperature and use of fertilisers and pesticides should be 236 

urgently addressed by empirical studies. As an example, Schlenker and Lobell (2010) found 237 

that the marginal effect of temperature is lower in African countries with low use of fertilisers. 238 

Similarly, as rising temperatures facilitates the diffusion of pests (see Deutsch al 2018 and 239 

Delcour et al 2015 for a more general review of the impact of climate change on pesticides), 240 

marginal impact of weather can be influenced by the level of pesticides. In both cases, future 241 

research should explore the suitability of non-linear functions, for example to consider 242 

decreasing marginal gains from the application of chemical inputs, or interact them with other 243 

factors such as temperature, rather than adopting the linear approximation discussed here. 244 

The level of pesticides and fertilisers could in principle proxy for other aspects of management  245 

such as mechanisation or advanced cultivars but only if the timespan of these factors is 246 

correlated to the time pattern of fertilisers or pesticides in a significant number of countries 247 

used in this study. This is probably not very likely to happen. 248 

ADDITIONAL ADAPTATION OPTIONS.  Development of crop varieties matched to not only 249 

current conditions but also those likely to develop in the coming decades is an area of 250 

substantial current research interest (Evenson 2003). Notably in Africa, which contains a great 251 

share of the countries worst affected by rising temperatures, the green revolution has been 252 

harder to establish due to a broad range of environmental and socio-economic factors 253 

(Oladele et al 2016). The yield of maize in the USA was found less sensitive to extreme heat 254 

Commented [HR5]: This sentence might need a bit more 
context? Why non-linear forms? Maybe just delete it?  
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days in hotter climates (Butler and Huybers 2013), results showing that response to 255 

temperature can be substantially reduced by the choice of cultivars. On the other hand, a 256 

trade off between the level of the yield and the robustness to heat has also been  found in 257 

new varieties (Tack et al 2015). Associated with higher environmental or economic costs, 258 

increased use of agricultural chemicals and expansion of cropping area are obvious routes to 259 

addressing issues of food security, as it would decrease reliance on imports for countries 260 

challenged by food security. Certainly, from the environmental perspective these routes are 261 

problematic, and could be counterproductive in terms of the global communities’ ability to 262 

meet the UN SDGs.  263 

With regard to changing growing season, early planting dates failed to increase the US yield 264 

of maize, millet and wheat (Ko et al. 2012), but higher yields of US maize could be obtained if 265 

high planting rates are combined with delayed planting dates (Carter et al. 2018). This seems 266 

an area where further research is urgently required,  especially taking into consideration the 267 

impact of changing one crop’s planting and harvest dates on the crops which are planted after 268 

its harvest. Crop switching is another factor potentially reducing the impact of rising 269 

temperatures on crop yield.  Negative welfare impact arising from the climate scenarios for 270 

Africa in 2100 could fully be counteracted  by switching crops (Kurukulasuriya and 271 

Mendelsohn 2008). Qualitative studies focusing on specific locations however point out 272 

obstacles to crop switching, primarily influenced by economic, political, and social rather than 273 

climate factors (Mertz et al. 2009). Benefits arising from crop switching can be highly crop-274 

dependent even when assessed for the same location (Gorst, Dehlavi and Groom 2018). The 275 

diversity in terms of marginal impact of temperature increases across crops discussed in this 276 

study suggests that substituting highly sensitive crops with those resilient to temperature 277 
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increases is a potential adaptation to rising temperatures. Bearing in mind that this process 278 

would take place across countries, it may severely impact the diversity of crops used in 279 

agriculture . This is an aspect which should be assessed as a matter of urgency by empirical 280 

studies. 281 

Another factor which might help counteract the negative impact of rising temperatures is CO2 282 

fertilisation. C3 crops, i.e. rice, wheat, soybeans, rye, barley, cassava and potatoes, are more 283 

sensitive to CO2 compared to C4 crops, i.e. maize, sorghum and sugarcane, with low sensitivity 284 

in the latter due to CO2 being already saturated, although increases in transpiration efficiency 285 

might occur under dry conditions (Ainsworth et al. 2008, Long et al. 2006). Crop response to 286 

elevated CO2 remains the largest source of uncertainty in crop yield studies (Deryng et al 287 

2014), but expected gains have been revised downwards by more credible Free-Air 288 

Concentration Enrichment (FACE) studies, compared to earlier work (Leaky et al. 2009). The 289 

impact of CO2 fertilisation was found to reduce or disappear under wetter, drier and/or hotter 290 

conditions when the forcing variable exceeded its intermediate regime (Obermeier et al 291 

2017). In addition, increasing CO2 is expected to negatively affect the quality of grains by 292 

reducing the overall protein content (Taub D et al 2008) and may require large quantities of 293 

fertilisers (Long et al. 2006). Incorporating the effects of CO2 in empirical modelling is 294 

challenging, as CO2 does not have any spatial variation and changes only slowly across time. 295 

A number of potential avenues are discussed in Lobell and Asseng (2017). Introduction of CO2 296 

fertilisation in process-based model is more straightforward but without more clarity on the 297 

impact of CO2 from FACE studies, coefficients used in process-based model are likely to be 298 

highly unreliable.  299 
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IMPLICATIONS FOR FOOD SECURITY AND PRODUCTIVITY.  Our results on the relationship 300 

between impact of rising temperatures and existing level of crop yield considerably extend 301 

findings in the literature, presented for a limited number of crops and sometimes using proxy 302 

such as latitude (Rosenzweig et al 2014) and GDP (Deryng et al 2014). There are a number of 303 

institutional routes to address the impacts of warming temperatures on food security and 304 

productivity, although there may be substantial costs or barriers associated with them. These 305 

include increasing technology transfer to worst affected countries, and sharing targeted 306 

agronomic research. International donors might  facilitate this process, and co-ordinated 307 

international actions to raise yields through improved agronomic practices and 308 

modernization of the agronomic system might be required, while managing the complications 309 

which intensification can itself originate (Dalin et al. 2017, Zhang et al. 2015).  310 

This is particularly important in those countries with a prevailing low productivity and 311 

inadequate diet which have not benefited fully from the green revolution (Sanchez and 312 

Swaminathan 2005). Changing harvesting area is also an important consideration for food 313 

security and productivity. Our research can flag the countries which are likely to stop 314 

production of a  certain crop, those with high marginal negative impact and low productivity. 315 

New marginal producers  are also likely to start production, i.e. those countries having similar 316 

climatic condition to those with the highest positive marginal impact (Alexander e al 2018). 317 

Finally, the impact of international trade to help tackling the concerns related to food security 318 

should also be urgently explored, bearing in mind that rising temperatures are likely to impact 319 

international trading patterns as the absolute advantage to trade change across countries. 320 

CONCLUSION. Based on historical variation in weather, crop yield and agronomic inputs we 321 

estimated the functional relationship between crop yield and its drivers and assess the impact 322 
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of warming trends for 18 crops, responding to the call for more evidence in the agricultural 323 

and environmental community (Ciscar et al. 2018). This article analyses how marginal effects 324 

of temperature differ across crops, suggesting different degrees of resilience to rising 325 

temperatures, and countries, therefore identifying winners and losers from warming trends. 326 

Several countries with highly negative marginal impact of temperature are also characterized 327 

by low crop productivity and low caloric intake. Domestic food supply could be increased 328 

through increasing food imports, decreasing exports, or increasing the area of land used for 329 

crop production. Further advances in the insights from this article could be obtained through 330 

quantification of the relationship between marginal impact, food security and productivity or 331 

the creation of a weighted indicators incorporating opportunities and risks related to 332 

improved agronomic practice (fertilisers and pesticides), extension of irrigation, options 333 

offered by crops switching and changes in the harvest calendar as well as the possibility to 334 

move the harvest areas towards more favourable growing conditions. This indicator could be 335 

built based on the differences between one country and regional average in order to flag 336 

opportunities for improvement in baseline yields and calorific intake. 337 

. 338 

 339 

  340 
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METHODS  341 

Overview. This article models crop yield at country level, as this spatial scale of analysis is 342 

predominantly used by studies centred on food security (Grassini et al. 2013). The models 343 

described below explore the sensitivity of crop yield to a number of factors, including 344 

weather, but also irrigation, and management practices such as the use of pesticides and 345 

fertilisers by making use of dataset covering the 1986-2012 time span. The analysis is 346 

implemented for 18 crops, namely barley, cassava, cotton, groundnuts, maize, millet, oats, 347 

potatoes, pulses, rapeseed, rice, rye, sorghum, soybeans, sugarbeet, sunflower, sweet 348 

potatoes and wheat. This set of crops is very exhaustive as it uses all the data (with the 349 

exception of yams) available in the gridded crop calendar in Sacks et al. (2010), which is 350 

required to compute weather variables as described below. The specification search, which 351 

follows the General-to-Specific framework (Hendry and Richard 1982, Hendry et al. 1984, 352 

Campos et al. 2005) in terms of modelling approach and the variables used in the model, 353 

incorporates considerations related to statistical significance, and therefore to the precision 354 

of the estimates, as well as the sign of estimated marginal impacts from agronomic literature 355 

and previous studies. The time period used in this article covers at most the years between 356 

1986 and 2012, although the specific start and end years vary across countries and modelled 357 

crops. In addition, data for some of the variables used in this study are available for a shorter 358 

period of time, as described below. Overall, the time period used in this study is comparable 359 

to the timespan incorporated in previous contributions (Lobell et al. 2011, Tebaldi and Lobell 360 

2018, Lobell and Tebaldi 2014, Moore and Lobell 2014, 2015, Schauberger et al. 2017), and 361 

judged adequate to study implications of weather factors on crop yields. Countries covered 362 

in the dataset vary across crops, reflecting requirements in terms of growing conditions and 363 

dietary habits.  364 

Data. Crop yield is defined as the harvested production per unit of harvested area with data 365 

collected from the online dataset of the Food and Agriculture Organization of the United 366 

Nations (FAO), i.e. FAOSTAT Database Agricultural Production. These are annual time series 367 

at country level. Weather variables are included in terms of their monthly average weighted 368 

across the growing season. Data for irrigation, pesticides and fertilisers are available only for 369 

total agricultural activity, e.g. tons of fertilisers used in the agricultural sector as a whole, 370 

rather than in the cultivation of a specific crop. In addition, fertiliser data are available for a 371 
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limited number of countries compared to the set of countries for which crop yield data are 372 

available. These are limitations of the available datasets which influence the way in which 373 

specification search is implemented, as discussed below.  374 

 Information for pesticides, defined as the average use per area of cropland (kg/ha), is 375 

taken from FAOSTAT Database Inputs. Annual data are available at the earliest from 376 

1990 onwards for 164 countries, although the actual start year of the dataset varies 377 

across countries; 378 

 Data for irrigation (area irrigated in hectares) are obtained from the Global Map of 379 

Irrigation Areas (GMIA, Siebert et al. 2013) used by FAO's Information System on 380 

Water and Agriculture (AQUASTAT). This dataset is available for the year 2005 for 196 381 

countries. We computed irrigated agricultural areas as a percentage of agricultural 382 

areas by using agricultural area retrieved from FAOSTAT Database Inputs and we then 383 

divided countries into two groups, those with intensive irrigation systems, i.e. 384 

countries with more than 10% of their agricultural area being irrigated (a group of 39 385 

countries) and those not characterized by an intensive irrigation systems, i.e. countries 386 

with less than 10% of their agricultural area being irrigated (resulting in a set of 157 387 

countries); 388 

 Data for fertilisers, taken from IFASTAT of the International Fertilisers Association 389 

(IFA), are expressed as consumption (in metric tons) of Grand Total Nitrogen in 2005 390 

for 109 countries. By using cropland information from FAOSTAT Database Inputs, we 391 

express consumption of fertilisers per hectare of cropland, so as to obtain data 392 

comparable to those available for pesticides; 393 

 The weather variables include country-level temperature (measured in °C) and 394 

precipitation (measured in millimetres). We follow established practice in the 395 

literature (Lobell et al. 2011, Lobell and Field 2007) to construct weather variables by 396 

averaging monthly weather observations based on a constant crop growing season 397 

(Sacks et al. 2010) and areas where the crop is cultivated (Monfreda et al. 2008). In 398 

this way, only weather fluctuations specific to the production of each crop are 399 

considered, leading to a precise identification of the impact of temperature and 400 

precipitation on yield.  This implies combining three different datasets: 401 
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1) monthly average of temperature and precipitation on a grid of 30min 402 

resolution, collected from the Climate Research Unit of the University of East 403 

Anglia (CRU TS v. 3.23, Harris et al. 2014),  404 

2) a map of cropland at 5min resolution (Monfreda et al. 2008) and  405 

3) a crop calendar, which provides the growing season for each crop on 5min 406 

resolution (Sacks et al. 2010). 407 

The weather variables correspond to daily (or diurnal) average temperature and total 408 

precipitation, by combining monthly anomalies and monthly climatology (see Harris et al. 409 

2014). All crops have one growing season in the crop calendar in Sacks et al. (2010), apart 410 

from maize, rice and wheat that have main and secondary season, for which we used the 411 

main season, similarly to Lobell et al (2011). The possibility of multiple cropping on the same 412 

land plot should not have an impact on the outcome of this analysis, as the focus is the crop 413 

yield and not land requirements for cropping. 414 

Our analysis uses country-level datasets, due to the obvious difficulty of accessing global 415 

datasets at the sub-country level. The need to use datasets covering multiple countries also 416 

influenced our choice of weather variables. As historical hourly weather data are challenging 417 

to aggregate across a variety of growing regions (Troy et al. 2015), our study follows 418 

established practice of using monthly averages of temperature and precipitation in linear and 419 

quadratic terms (Ben-Ari and Makowski 2016, Lobell and Tebaldi 2014, Lobell et al. 2011, 420 

Moore and Lobell 2015, Schlenker et al. 2006). Such specifications align with the agronomic 421 

literature with regard to crops best growing within a range of temperature and precipitation, 422 

beyond which weather factors become harmful for production. We pool together all 423 

countries growing a specific crop, as previous analyses with specific country groups (Lobell et 424 

al. 2011) have shown that the estimated impact of temperature and precipitation is 425 

comparable across groupings. 426 

The choice of the time span for this study (1986 to 2012) mirrors other studies in the literature 427 

(e.g. Lobell et al. 2011). However, for the models including pesticides, the start year of the 428 

sample in this study is 1990 due to data availability. Our analysis covers at most the timespan 429 

from 1986 to 2012 to maintain comparability with existing studies (e.g. Tebaldi and Lobell 430 

2018, Schauberger et al. 2017, Moore and Lobell 2014, Lobell and Tebaldi 2014) and across 431 

models estimated in this article. We followed the majority of contributions in the literature 432 

by adopting panel approaches to benefit from much larger number of data points, dataset 433 
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incorporating more variation compared to a single time series, ability to control for omitted 434 

variables, especially if their variation across time is limited (Hsiao et al., 1995). Estimation is 435 

also more straightforward as, from a statistical perspective, there is no need to deal with 436 

stochastic or deterministic trends, to the extent to which one need to do if dealing with a 437 

single times series. On the other hand, given the global coverage of our dataset and the 438 

possibility of large differences in cultivars and agronomic practice between countries, optimal 439 

growing condition could vary considerably. Evidence against this possibility has been explored 440 

in a dataset similar to the one used in this study by Lobell et al (2011). Subgrouping of 441 

countries in the panel was not found to be very influential on the results of their analysis. In 442 

addition, optimal temperature in the case of sugar beet provided estimated here are very 443 

similar to those we found in a set of single European countries, as part of the follow-up study 444 

to as Agnolucci and de Lipsis (2019). It is important to mention that a different location of the 445 

optimal temperature does not imply necessarily a change in the value of the marginal effect 446 

which is the key metrics in this study, as the marginal effect or a specific country is determined 447 

not only by the location of the optimal temperature but also by the curvature of the parabola 448 

being estimated.  449 

Statistical Models. This study makes use of a comprehensive collection of panel models, with 450 

the subscripts 𝑖 and 𝑡 indicating country and year respectively). The most general model 451 

includes a country-specific quadratic trend (𝑡, 𝑡2), an individual specific time-invariant 452 

component, 𝛼𝑖, a common time-variant component, 𝜆𝑡, as well as a set of observed variables 453 

potentially affecting crop yield, included in vector 𝐗𝑖𝑡. This specification, in which 𝑦𝑖𝑡  454 

represents the logarithm of crop yield and 𝜀𝑖𝑡  a random disturbance, reads as follows:  455 

𝑦𝑖𝑡 = 𝛼𝑖 + 𝜆𝑡 + 𝜌1𝑖𝑡 + 𝜌2𝑖 𝑡2 + 𝛃𝐗𝑖𝑡 + 𝜀𝑖𝑡     (1) 

In the second-most general model, the common time-variant component, 𝜆𝑡 is dropped so 456 

that: 457 

𝑦𝑖𝑡 = 𝛼𝑖 + 𝜌1𝑖 𝑡 + 𝜌2𝑖𝑡2 + 𝛃𝐗𝑖𝑡 + 𝜀𝑖𝑡     (2) 

while by dropping the country-specific quadratic trend and reinserting common time-variant 458 

component, 𝜆𝑡, one obtains: 459 
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𝑦𝑖𝑡 = 𝛼𝑖 + 𝜆𝑡 + 𝛃𝐗𝑖𝑡  + 𝜀𝑖𝑡      (3) 

It is worth noting that coefficients of the quadratic time trends are allowed to differ across 460 

countries, while the coefficients of all other components are assumed to be constant across 461 

countries, as implemented in Lobell et al. (2011). By including country specific time trends, 462 

we aim to account for factors like technological advance or other time-varying features that 463 

could possibly influence crop productivities. We capture country-based unobserved effects 464 

by estimating models using either fixed effects or random effects; the choice between the 465 

two is based on the Hausman test (Hausman 1978).1 We also estimate models pooling the 466 

dataset and providing estimates based on country-specific averages across time (individual 467 

between estimator) or time-specific averages across countries (time effects between 468 

estimator).  469 

Set of Explanatory Variables. In our analysis of the impact of weather factors and 470 

management practices on crop yield, the most general set of control variables, 𝐗𝑖𝑡
𝟏  includes:  471 

1) temperature and precipitation incorporated in both their levels and their squared 472 

terms as in Lobell et al. (2011); 473 

2) an indicator for the extent to which irrigation is deployed in the whole agricultural 474 

sector, with the indicator taking a value equal to one for countries with more than 475 

10% of their agricultural area being irrigated and a value equal to zero otherwise. This 476 

indicator is interacted with the linear terms of the weather variables, so that 477 

temperature and precipitation is allowed to have a different optimal value in 478 

countries making extensive use of irrigation; 479 

3) use of pesticides and fertilisers in the whole agricultural sector. 480 

𝐗𝒊𝒕
𝟏 = [𝛽1𝑇𝑒𝑚𝑝𝑖𝑡

2 + 𝛽2𝑇𝑒𝑚𝑝𝑖𝑡 ∙ 𝐼𝑟𝑟𝑖 + 𝛽3𝑇𝑒𝑚𝑝𝑖𝑡 + 𝛽4𝑃𝑟𝑒𝑐𝑖𝑡
2 + 𝛽5𝑃𝑟𝑒𝑐𝑖𝑡 ∙ 𝐼𝑟𝑟𝑖

+ 𝛽6𝑃𝑟𝑒𝑐𝑖𝑡 + 𝛽7𝑃𝑒𝑠𝑡𝑖𝑡 + 𝛽8𝐹𝑒𝑟𝑡𝑖𝑡]        

(4) 

When the full vector of controls is not used, our attention is primarily focused on the 481 

interaction between irrigation and temperature, following recent studies exploring such a 482 

                                                
1 In the case of soybeans, omitted variable bias is absorbed by estimating the model in first differences. A global 
trend is included in this case, instead of a country-specific trend driven by the model’s fit which has been more 
challenging comparing to all other crops of our sample.   
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relationship (e.g. Schauberger et al. 2017). For this reason, we start dropping the factors 483 

related to management practice, i.e. 𝑃𝑒𝑠𝑡𝑖𝑡  and 𝐹𝑒𝑟𝑡𝑖𝑡 , and only if no viable models are 484 

delivered by the search specification below, we drop the impact of irrigation on weather 485 

factors, i.e. 𝑇𝑒𝑚𝑝𝑖𝑡 ∙ 𝐼𝑟𝑟𝑖  and 𝑃𝑟𝑒𝑐𝑖𝑡 ∙ 𝐼𝑟𝑟𝑖  so that the set of variables included in the models 486 

are respectively:  487 

𝐗𝒊𝒕
𝟐 = [𝛽1𝑇𝑒𝑚𝑝𝑖𝑡

2 + 𝛽2𝑇𝑒𝑚𝑝𝑖𝑡 ∙ 𝐼𝑟𝑟𝑖 + 𝛽3𝑇𝑒𝑚𝑝𝑖𝑡 + 𝛽4𝑃𝑟𝑒𝑐𝑖𝑡
2 + 𝛽5𝑃𝑟𝑒𝑐𝑖𝑡 ∙ 𝐼𝑟𝑟𝑖

+ 𝛽6𝑃𝑟𝑒𝑐𝑖𝑡]     

(5) 

𝐗𝒊𝒕
𝟑 = [𝛽1𝑇𝑒𝑚𝑝

𝑖𝑡

2 + 𝛽3𝑇𝑒𝑚𝑝𝑖𝑡 + 𝛽4𝑃𝑟𝑒𝑐𝑖𝑡
2 + 𝛽6𝑃𝑟𝑒𝑐𝑖𝑡 + 𝛽7𝑃𝑒𝑠𝑡𝑖𝑡 + 𝛽8𝐹𝑒𝑟𝑡𝑖𝑡]     (6) 

Finally, the simplest set of explanatory weather variables include only weather factors: 488 

𝐗𝒊𝒕
𝟒 = [𝛽1𝑇𝑒𝑚𝑝𝑖𝑡

2 + 𝛽3𝑇𝑒𝑚𝑝𝑖𝑡 + 𝛽4𝑃𝑟𝑒𝑐𝑖𝑡
2 + 𝛽6𝑃𝑟𝑒𝑐𝑖𝑡]                                               (7) 

Search specification. We follow the General-to-Specific approach of Hendry and Richard 489 

(1982) both in terms of the set of explanatory variables and the statistical models being 490 

estimated. With regard to the statistical models discussed above, our methodology goes from 491 

the most general to the most specific model, by implementing models  492 

1) with both country-specific quadratic time trends and common time effects, (1) above;  493 

2) only country-specific quadratic time trends, (2) above;  494 

3) only common time effects, (3), and eventually 495 

4) models where data are pooled either across time or countries. 496 

With regard to variables used in the estimation, the set of variables goes from the most 497 

general, i.e. 𝐗𝒊𝒕
𝟏 , to the most specific, i.e. 𝐗𝒊𝒕

𝟒 . During the search specification, a model is 498 

considered to be congruent to the underlying data generating process of crop yield, if 499 

1) relationship between yield and temperature has an inverted-U functional shape; 500 

2) coefficients on pesticides, fertilisers and irrigation indicators are statistically 501 

significant; 502 

3) optimal temperature observed in countries with intensive irrigation systems is higher 503 

than the optimum in countries where irrigation use is low, and  504 

4) the impact of pesticides on crop yield is positive. 505 
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Considering that data for irrigation, pesticides and fertilisers are observed for the agricultural 506 

sector as a whole rather than a specific crop, and these variables are available for a limited 507 

number of countries and time periods compared to the crop yield and weather datasets, 508 

condition 2) above is adopted so that these variables are retained only if they contribute to 509 

explaining the crop yield in a statistically significant fashion. We therefore use statistically 510 

significance to discern whether variables observed for the whole agricultural sector can be 511 

used as a proxy for the impact of intensification and management practices for the specific 512 

crop at hand, therefore tackling the limitation that crop-specific fertilisers, pesticides and 513 

irrigation data are not available at least at global scale. As further criteria to discern sensible 514 

impact of irrigation and pesticides we require optimal temperature observed in the countries 515 

with intensive irrigation systems to be higher than the optimal level in countries where 516 

irrigation use is low, based on evidence in Schauberger et al. (2017) – see condition 3 above. 517 

A positive relationship between the use of pesticides and protection of crop quality and yield 518 

is well established (Popp et al. 2013) so that we explicitly require coefficient on pesticides 519 

being positive – condition 4. On the other hand, evidence on the relationship between the 520 

use of fertilisers and crop yield is less conclusive (Lassaletta et al. 2014) so that we do not 521 

impose a similar requirement on the coefficient of fertilisers.2 Condition 1) above arises from 522 

the fact that it reflects a plausible assumption for the growing conditions of crops; an 523 

assumption arising in economic studies (Deschênes and Greenstone 2007) and increasingly 524 

used in the econometric crop yield literature (e.g. Lobell et al. 2011, Moore and Lobell 2015, 525 

Tebaldi and Lobell 2018) to indicate that crops are benefited by moderate weather changes 526 

while are damaged under extreme circumstances. The effect of precipitation is harder to 527 

identify compared to the temperature effect, with precipitation coefficients being not 528 

statistically significant in studies like Lobell and Tebaldi (2014). Also climate models disagree 529 

on the sign of precipitation (Christensen et al. 2007), as sign of the uncertainty surrounding 530 

the impact of this factor n the yield. For this reason, we do not assume condition 1) for 531 

precipitation, with our procedure limited to dropping the quadratic term when the coefficient 532 

is positive.  533 

Our search specification is therefore as follows:  534 

                                                
2 Lassaletta et al. (2014) outline that agricultural performance has improved in some countries due to fertilisers 
while it has deteriorated in others from an agronomic and environmental point of view.  
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1) We run each statistical model described above with the set of variables in (4) and 535 

assessed the suitability of the estimated models, i.e. the 𝑁 +  𝑃 +  𝐼 +  𝑊 models in 536 

Figure 3 (where 𝑁, 𝑃, 𝐼, 𝑊 stand for Nitrogen/Fertilisers, Pesticides, Irrigation and 537 

Weather respectively), based on the conditions above 538 

2) If none of the models satisfies the search criteria above, we simplify the set of control 539 

variables by estimating the  (𝐼 +  𝑊) models, the  (𝑁 +  𝑃 +  𝑊) models dropping 540 

either 𝑁 or 𝑃 if one contradicts conditions above, and the  𝑊 models in Figure 4, in 541 

this order  542 

3) As soon as the applicable requirements are met we stop the search procedure and 543 

select the final model. This occur in the case of all crops. 544 

Models delivered by this search specification are comparable to those in the literature when 545 

assessed based on the amount of variation in the crop yield explained by the models. For 546 

instance, our adjusted 𝑅2  is 57% and 35% for maize and sorghum, which compares well with 547 

the 47% and 29% in Lobell and Field (2007). 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

Figure 5. Relationship between the set of explanatory variables used in this study. 𝑁 +  𝑃 +  𝐼 +  𝑊 models 560 
indicate models incorporating 𝑋𝑖𝑡

1  above; 𝐼 +  𝑊 models incorporating 𝑋𝑖𝑡
2 ; 𝑁 +  𝑃 +  𝑊 models incorporating  561 

𝑋𝑖𝑡
3 ; and 𝑊 models incorporating 𝑋𝑖𝑡

4 . 562 

 563 

Marginal effect and optimal level of weather factors. For the final models identified through 564 

the search specification described above, we computed the optimal level of each weather 565 

factor, taking into account interaction with the irrigation dummies. In the case of 566 
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temperature, as an example, the optimal temperature for countries where irrigation use is 567 

deemed negligible can be computed as 𝑉𝑇𝐸𝑀𝑃 = −
𝛽3

2𝛽1
, whereas for countries using high 568 

irrigation, the optimal level is equal to 𝑉𝑇𝐸𝑀𝑃−𝐼𝑅𝑅 = −
(𝛽2+𝛽3)

2𝛽1
. For each model, we compute 569 

the coefficient of determination (𝑅2) with and without adjusting for the variables used in the 570 

regression. Standard errors robust to heteroscedasticity and serial correlation are estimated 571 

to assess the significance of the coefficients in the models.  572 

In addition, for each model we compute the effect of temperature and precipitation in 573 

relation to a change of 1C and 10 mm. As we estimated a quadratic relationship, the effect 574 

varies across the level of the weather factor at which the effect is computed. As an example, 575 

the impact of a 1C temperature increase starting from the level T0 for countries where 576 

irrigation use is deemed negligible can be computed as: 577 

𝑀𝐸𝑇𝐸𝑀𝑃
1°𝐶 = 2𝛽1 + 𝛽3𝑇0 578 

while for countries using high irrigation, the impact of a 1C temperature increase is equal to: 579 

𝑀𝐸𝑇𝐸𝑀𝑃
1°𝐶 = 2𝛽1 + (𝛽2 + 𝛽3)𝑇0 580 

The impact of temperature increase different from 1C is simply equal to 𝑇𝐸𝑇𝐸𝑀𝑃
1°𝐶  multiplied 581 

by any specific increase in temperature. Table SI1 reports the marginal effect evaluated at the 582 

global mean, observed over the 1986 and 2012.  In Table SI1, we also present the impact 583 

observed in correspondence of a change in temperature and precipitation equal to the 584 

average standard deviation, computed by averaging the standard deviation observed in each 585 

country in the sample used in this study, so as to obtain a global average of the standard 586 

deviation of the weather factors observed in each country . In terms of the functional 587 

relationship, this has been computed at the global mean.  588 

 589 

Code availability 590 

The scripts used in the preparation of the dataset, the estimation of the models and the production of the figures 591 

displayed in the paper is available in the following Github repository [ADD WHEN READY] 592 

 593 

  594 
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SUPPLEMENTAL INFORMATION 

 

HISTORIC VARIATION IN YIELDS AND MODEL PERFORMANCE. 

There is considerable diversity in the average crop yields, observed over 1986-2012 across 

countries. The average yield of maize, as an example, varies by two orders of magnitude, 

between 265 kg/ha (Botswana) and 16,000 kg/ha (Israel), with yields above 10,000 kg/ha 

recorded in Israel, Jordan, Belgium and New Zealand. For each crop, there tends to be a 

limited number of countries with yield considerably higher than the rest. manifesting 

themselves as a long right tail in the distributions of crop yield – see Figure SI 1. There is also 

diversity in the pattern of crop yield across time, reflecting the different evolution of 

environmental, social and economic growing conditions occurring across time in different 

countries, as shown for the 5 biggest producers (based on mean production during 1986-

2012) in Figure SI2. In some cases, crop yields levels differ across countries but share a 

common pattern across time while for some other crops, there is no consistent trend across 

countries.  

We model the relationship between yield and its determinants, focusing on temperature, 

precipitation, pesticides, fertilisers and irrigation, separately for the 18 crops we consider. We 

implement panel data models to take into account within country and across-countries 

variation but also similarities, as well as unobserved diversity through fixed or random effects. 

We also incorporate country specific time trends to proxy for factors that could positively (e.g. 

technological advance) or negatively (e.g. soil erosion) affect yield patterns and estimate 

models producing credible estimates while partially capturing the variation in the data either 

across countries or across time, as discussed in Methods. 

We extend established approaches for modelling the effects of climate on crop yields (Lobell 

et al. 2011) by accounting for additional factors affecting crop productivity (fertilisers, 

pesticides and level of irrigation), and covering a larger number of crops, all studied for the 

first time at the global level (Methods). Estimated models studied explain a considerable part 

of the yield based on the computed coefficient of determination (𝑅2) - higher than 80% in 

the case of cotton, pulses, potatoes, rice, sunflower and wheat, and between 50 and 70% in 

the case of cassava, groundnuts, maize and oats. 
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EFFECT OF WEATHER, IRRIGATION, PESTICIDES AND FERTILIZERS ON CROP YIELDS.  

We estimated an inverted U-shaped relationship between temperature and crop yields for all 

18 crops, with the computed values for the optimal temperature reflecting credible 

conditions of crop production (Table SI1). Each plot in column A of Figure 2 reports the 

marginal effect of temperature estimated at the global mean and +/- 4°C. As agronomy differs 

between countries and crops in some instances we provide estimates for high inputs with 

irrigation and low input systems. As one can see in Figure 1, in the models including irrigation, 

the negative impact of temperature is mitigated so that the optimal level of temperature is 

higher in those countries with intensive irrigation systems. As an example, in the case of 

maize, optimal growing temperature is about 15°C in case of low irrigation and 18.5°C for 

countries with high irrigation – see Figure 2. This allows maize to develop higher resilience to 

temperature, which reduces the marginal effect on yield from -2.6% to -1.1% evaluated at the 

global mean. Moreover, in the case of wheat, intensive irrigation appears to turn the negative 

impact (-2.4%) into positive (3.3%), as optimal temperature increases from about 15 °C when 

irrigation does not play an important role to 20 °C when it is of high use. 

With regard to the functional relationship between crop yield and precipitation, an inverted 

U-shaped relationship is estimated for 8 of the 18 crops. For the remaining crops, the effect 

appears to be linear, with both negative and positive effects observed across crops.  The use 

of pesticides and fertilisers positively impacts crop yield, with these factors indicating 

intensification of crop production and improved management. More specifically, according 

to our results, an increase of one kg/ha of pesticides raises the yield of about half the crops 

modelled here, in the range between 4% in the case of sugar beet and 14% of potatoes, while 

in the case of the other crops, this factor was dropped, as being non-statistically significant 

or providing counterintuitive results. An increase of one kg/ha of fertilisers increases the 

yield between 0.2% in the case of sugar beet and 0.6% in the case of sunflower. Detailed 

results, including all estimated coefficients, are shown in Table SI1. Distribution of pesticides 

and fertilisers can be seen in Figure SI3. 

Further details on the optimal level (indicated by ‘V’) and the marginal effect (indicated by 

‘ME’) of temperature and precipitation can be found in Table SI1. The marginal effect 

represents the percentage change in crop yield in response to an increase in temperature by 
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1 °C or 1 standard deviation, and an increase in precipitation by 10mm or 1 standard 

deviation, evaluated at the global mean. Irrigation implies higher optimal temperature values 

and higher resistance to temperature, so that the negative impact of temperature on the yield 

is contained. As an example, temperature increases are beneficial for maize up to the optimal 

temperature of 14.6 °C, with a marginal impact (of 1 °C change in temperature) at the global 

mean of about -3%. However, the optimal level of temperature is higher (18.5°C) in countries 

with high irrigation, and the marginal impact at the global mean smaller (-1%) although still 

negative. Similarly, the optimal level of temperature for cassava is about 20.5 °C and the 

marginal impact at the global mean -1.4% while in presence of high levels of irrigation, the 

optimal temperature level rises to 25.8 °C and the marginal impact at the global mean is 0.6%. 
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Figure SI 1a. Distribution of country average yields, computed over the 1986-2012 time period. Figures have been computed over the 1986-2012 period 
from FAOSTAT commodity balance data. The x-axis depicts the average crop yield (measured in kg/ha), and the y-axis the frequency of each value being 
observed in the dataset. 
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Figure SI 1b. Distribution of country average yields, computed over the 1986-2012 time period. Further note can be found in the caption of Figure SI 1a. 
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Figure SI2a. Pattern of historical yields for the 5 biggest producers. The acronyms in the figure indicate the following countries: Argentina (ARG), Australia 
(AUS), Brazil (BRA), Canada (CAN), China (CHN), Congo (COG), Germany (DEU), France (FRA), Germany (DEU), Ghana (GHA), Indonesia (IDN), India (IND), Mali 
(MLI), Mexico (MEX), Myanmar (MMR), Niger (NER), Nigeria (NGA), Pakistan (PAK), Poland (POL), Russia (RUS), Thailand (THA), Ukraine (UKR) and Unites 
States of America (USA). 
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Figure SI2b. Pattern of historical yields for the 5 biggest producers. The acronyms in the figure indicate the following countries: Argentina (ARG), Bangladesh 
(BGD), Belarus (BLR), Brazil (BRA), Canada (CAN), China (CHN), Germany (DEU), France (FRA), Indonesia (IDN), India (IND), Japan (JPN), Mexico (MEX), Nigeria 
(NGA), Poland (POL), Russia (RUS),  Turkey (TUR), Ukraine (UKR), Vietnam (VNM)and Unites States of America (USA). 
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Figure SI3. Distribution of average pesticides (left) and fertilizers (right). Figures have been computed 
over the 1986-2012 period. The x-axes depict the average use of pesticides (kg/ha) and fertilizers 
(kg/ha) and the y-axis the frequency of each value being observed in the dataset..
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 Barley Cassava Cotton Groundnuts Maize Millet 
Temp  0.072** 0.079 0.142 0.251* 0.056 0.292 
Temp2 -0.002** -0.002*** -0.003 -0.006** -0.002** -0.007 

Prec 
-2.213E-04 

 3.8E-04 7.03E-05 -2.7E-04 -2.0E-04 
-9.6E-04 

 

Prec2    
-1.91E-

06    

Temp Irr  0.020***  0.016** 0.015**  
Prec Irr    0.000   

Pest       
Fert       
       

V Temp 15.50 20.58 22.81 21.90 14.56 19.85 
V Temp Irr  25.82  23.28 18.48  

V Prec    18.38    
 V Prec Irr       
       

ME Temp (1C) -0.6% -1.4% 0.76% -1.7% -2.6% -2.9% 

ME Temp Irr (1C)   0.6%   -0.1% -1.1%   

ME Prec (10mm) -0.22% 0.4% -0.34% -0.3% -0.2% -1.0% 
ME Prec Irr (10mm)       -0.1%     
       

ME Temp (1sd) -0.34% -0.3% 0.32% -0.6% -1.1% -1.4% 
ME Temp Irr (1sd)  0.1%  0.0% -0.5%  

ME Prec (1sd) -0.30% 0.7% -0.51% -0.5% -0.4% -1.7% 
ME Prec Irr (1sd)     -0.2%   
       

𝑅2  0.24 0.68 0.86 0.51 0.60 0.85 

𝑅𝑎𝑑𝑗
2   0.17 0.66 0.82 0.46 0.57 0.81 

N 2179 1614 1455 2553 3412 1959 
n 88 60 57 98 132 82 
       

Wald test (Chi-square, 
p-value) 

5.98 
0.11 

13.22 
0.01 

0.43 
0.98 

22.37 
0.00 

12.82 
0.01 

1.36 
0.72 

Table SI1a. Estimated models for the crops modelled in this study. Estimation is based on robust 
standard errors when the model accounts for within and across countries variation. ***, **, * indicate 
statistical significance at the 1%, 5% and 10% level, respectively. V Temp, ME Temp and V Prec, ME 
Prec represent vertices and marginal effects for temperature and precipitation respectively. V Temp 
Irr, ME Temp Irr, V Prec Irr and ME Prec Irr indicate vertices and marginal effects for temperature and 
precipitation in the high irrigation countries. Marginal effect of temperature and precipitation, 

evaluated at the sample average, are computed in response to a 1C, 10mm and average 1 standard 
deviation (1sd), averaged across countries, of the weather factors they refer to. N and n denote the 
number of observations and the number of countries, respectively. The joint significance of weather 
factors is assessed through a Wald test.  
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 Oats Potatoes Pulses Rapeseed Rice Rye 
Temp  0.042 0.065 0.161 0.100*** 0.606 0.059 
Temp2 -0.002 -0.001 -0.006 -0.005*** -0.014 -0.006** 

Prec 4.0E-04 -0.002 8.2E-05 0.010 0.004 0.007** 
Prec2  -6.2E-07  -5.4E-06 --9.7E-06 -9.9E-06  

Temp: Irr      0.066** 
Prec: Irr      -0.014*** 

Pest  0.142*** 0.064**  0.134***  
Fert       
       

V Temp 13.43 23.59 13.29 9.41 21.67 4.89 
V Temp Irr      10.36 

V Prec 318.88  7.61 499.29 223.73  
 V Prec Irr       
       

ME Temp (1C) -0.5% 1.5% -8.7% 0.02% -2.8% -4.2% 
ME Temp Irr (1C)           2.4% 

ME Prec (10mm) 0.3% -1.6% -1.1% 8.5% 1.6% 7.3% 
ME Prec Irr (10mm)           -6.8% 
       

ME Temp (1sd) -0.3% 0.6% -4.6% 0.0% -1.0% -2.8% 
ME Temp Irr (1sd)           1.6% 

ME Prec (1sd) 0.4% -2.5% -2.2% 7.6% 3.2% 6.7% 

ME Prec Irr (1sd)           -6.2% 
       

𝑅2  0.52 0.86 0.94 0.36 0.88 0.32 

𝑅𝑎𝑑𝑗
2   0.48 0.83 0.91 0.32 0.85 0.25 

N 1704 1661 1629 1334 1209 1375 

n 70 116 114 58 90 58 
       

Wald test (Chi-
square, p-value) 

2.36 
0.67 

1.27 
0.74 

19.02 
0.00 

30.27 
0.00 

4.35 
0.36 

24.15 
0.00 

Table SI1b. Estimated models for the crops modelled in this study. Description of the contents of the 
table can be seen in the caption of Table SI1a 
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 Sorghum Soybeans Sugarbeet Sunflower 
Sweet 

Potatoes 
 

Wheat 
Temp  0.101 0.115 0.130 0.121 0.160 0.147** 
Temp2 -0.002 -0.002 -0.004 -0.003 -0.004 -0.005** 

Prec 2.9E-04 2.9E-04 0.005 0.001 0.005 0.010*** 

Prec2  -9.8E-07  -4.1E-05  -2.8E-05 -4.1E-05** 

Temp: Irr      0.057** 
Prec: Irr      -0.005 
Pest   0.043** 0.120*** 0.052* 0.127*** 

Fert   1.651** 6.033** 3.494** -2.633** 

  
 

  

  

V Temp 27.58 25.84 16.21 20.62 22.77 14.59 
V Temp Irr      20.18 
V Prec 147.60  61.22  96.59 117.11 

 V Prec Irr      55.22 
       

ME Temp (1C) 1.9% 2.2% 0.6% 0.8% 1.0% -2.4% 

ME Temp Irr (1C)           3.3% 
ME Prec (10mm)  0.1% 0.3% 0.0% 0.9% -1.3% 3.5% 

ME Prec Irr (10mm)           -1.5% 
       
ME Temp (1sd) 0.8% 0.9% 0.3% 0.4% 0.3% -1.3% 

ME Temp Irr (1sd)           1.8% 
ME Prec (1sd) 0.1% 0.6% 0.0% 1.2% -2.4% 4.7% 

ME Prec Irr (1sd)          -2.1% 
       

𝑅2  0.43 0.01 0.41 0.85 0.34 0.92 

𝑅𝑎𝑑𝑗
2   0.35 0.01 0.32 0.81 0.23 0.88 

N 2450 2196 757 765 582 1208 

n 99 91 49 54 41 78 
       

Wald test (Chi-
square, p-value) 

3.26 
0.51 

4.35 
0.23 

13.52 
0.01 

0.48 
0.92 

3.82 
0.43 

28.65 
0.00 

Table SI1c. Estimated models for the crops modelled in this study. Description of the contents of the 
table can be seen in the caption of Table SI1a. 
   

 

 


