210 research outputs found

    The Forensic Characterization of Bacterial and Fungal Organisms in Traditional Chinese Medicine

    Get PDF
    There has been an increase in use of Traditional Chinese Medicine (TCM) in the United States because they are less expensive and believed to be more effective with less adverse effects in comparison to traditional pharmaceutics. Therefore, sales have increased in the US, despite articles and case studies demonstrating the dangers, such as injury and death, related to TCM, stemming from improper labelling, toxic contaminants, and, in some cases, the presence of pathogenic bacteria. The aim of this study was to perform a survival experiment to demonstrate the importance of proper herbal brewing technique and to conduct a molecular and biochemical survey of microorganisms present on eleven Chinese herbal samples. The survival study compared Chinese brewing preparation and American brewing preparation by fortifying the herbal mixture with known bacteria and assessing its survival after brewing. The American brewed herbal tea was calculated to contain upwards of 3000 CFU (colony forming units)/mL, where the Chinese brewed herbal tea contained roughly 50 CFU/mL. FAME (Fatty Acid Methyl Ester) analysis was performed on the herbs to characterize any microorganisms present on the plant material already, following purchase. Strains within the Bacillus genus were identified in nearly all eleven of the herbal samples. These included B. subtilis and B. megaterium. Organisms belonging to the Bacillus ACT group (anthracis, cereus, thuringiensis) were identified in five out of eleven herb cultures as evidenced by the large ratio of 15:0 iso to 15:0 anteiso fatty acid biomarkers. Nine out of eleven herbal specimens also exhibited fungal biomarkers such as polyunsaturated 20:4 ω6,9,12,15c, and 18:3 ω6c (6,9,12).https://scholarscompass.vcu.edu/uresposters/1291/thumbnail.jp

    Open-source Tools for Dense Facial Tissue Depth Mapping (FTDM) of Computed Tomography Models

    Get PDF
    Computed tomography (CT) scans provide anthropologists with a resource to generate three- dimensional (3D) digital skeletal material to expand quantification methods and build more standardized reference collections. The ability to visualize and manipulate the bone and skin of the face simultaneously in a 3D digital environment introduces a new way for forensic facial approximation practitioners to access and study the face. Craniofacial relationships can be quantified with landmarks or with surface processing software that can quantify the geometric properties of the entire 3D facial surface. This paper describes tools for the generation of dense facial tissue depth maps (FTDMs) using de-identified head CT scans of modern Americans from the public repository, The Cancer Imaging Archives (TCIA), and the open-source program Meshlab. CT scans of 43 females and 63 males from TCIA were segmented and converted to 3D skull and face models using Mimics and exported as stereolithography (STL) files. All subsequent processing steps were performed in Meshlab. Heads were transformed to a common orientation and coordinate system using the coordinates of nasion, left orbitale, and left and right porion. Dense FTDMs were generated on hollowed, cropped face shells using the Hausdorff sampling filter. Two new point clouds consisting of the 3D coordinates for both skull and face were colorized on an RGB scale from 0.0 (red) to 40.0 mm (blue) depth values and exported as polygon file format (PLY) models with tissue depth values saved in the “vertex quality” field. FTDMs were also split into 1.0 mm increments to facilitate viewing of common depths across all faces. In total, 112 FTDMs were generated for 106 individuals. Minimum depth values ranged from 1.2 mm to 3.4 mm, indicating a common range of starting depths for most faces regardless of weight, as well as common locations for these values over the nasal bones, lateral orbital margins, and forehead superior to the supraorbital border. Maximum depths were found in the buccal region and neck, excluding the nose. Individuals with multiple scans at visibly different weights presented the greatest differences within larger depth areas such as the cheeks and neck, with little to no difference in the thinnest areas. A few individuals with minimum tissue depths at the lateral orbital margins and thicker tissues over the nasal bones (\u3e 3.0 mm) suggested the potential influence of nasal bone morphology on tissue depths. This study produced visual quantitative representations of the face and skull for forensic facial approximation research and practice that can be further analyzed or interacted with using free software. The presented tools can be applied to pre-existing CT scans, traditional or cone-beam, adult or subadult individuals, with or without landmarks, and regardless of head orientation, for forensic applications as well as for studies of facial variation and facial growth. In contrast with other facial mapping studies, this method produced both skull and face points based on replicable geometric relationships producing multiple data outputs that are easily readable and software that is openly accessible

    Theory and design of Inx_{x}Ga1−x_{1-x}As1−y_{1-y}Biy_{y} mid-infrared semiconductor lasers: type-I quantum wells for emission beyond 3 ÎŒ\mum on InP substrates

    Get PDF
    We present a theoretical analysis and optimisation of the properties and performance of mid-infrared semiconductor lasers based on the dilute bismide alloy Inx_{x}Ga1−x_{1-x}As1−y_{1-y}Biy_{y}, grown on conventional (001) InP substrates. The ability to independently vary the epitaxial strain and emission wavelength in this quaternary alloy provides significant scope for band structure engineering. Our calculations demonstrate that structures based on compressively strained Inx_{x}Ga1−x_{1-x}As1−y_{1-y}Biy_{y} quantum wells (QWs) can readily achieve emission wavelengths in the 3 -- 5 ÎŒ\mum range, and that these QWs have large type-I band offsets. As such, these structures have the potential to overcome a number of limitations commonly associated with this application-rich but technologically challenging wavelength range. By considering structures having (i) fixed QW thickness and variable strain, and (ii) fixed strain and variable QW thickness, we quantify key trends in the properties and performance as functions of the alloy composition, structural properties, and emission wavelength, and on this basis identify routes towards the realisation of optimised devices for practical applications. Our analysis suggests that simple laser structures -- incorporating Inx_{x}Ga1−x_{1-x}As1−y_{1-y}Biy_{y} QWs and unstrained ternary In0.53_{0.53}Ga0.47_{0.47}As barriers -- which are compatible with established epitaxial growth, provide a route to realising InP-based mid-infrared diode lasers.Comment: Submitted versio

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec

    Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data

    Get PDF
    We report a quasi-differential upper limit on the extremely-high-energy (EHE) neutrino flux above 5×1065\times 10^{6} GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10610^{6} GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5×1065 \times 10^{6} and 5×10105 \times 10^{10} GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\ {\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}at at 10^9\ {\rm GeV}$. A significant part of the parameter-space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review

    Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array

    Get PDF
    Metazoan cells harness the power of actin dynamics to create cytoskeletal arrays that stimulate protrusions and drive intracellular organelle movements. In plant cells, the actin cytoskeleton is understood to participate in cell elongation; however, a detailed description and molecular mechanism(s) underpinning filament nucleation, growth, and turnover are lacking. Here, we use variable-angle epifluorescence microscopy (VAEM) to examine the organization and dynamics of the cortical cytoskeleton in growing and nongrowing epidermal cells. One population of filaments in the cortical array, which most likely represent single actin filaments, is randomly oriented and highly dynamic. These filaments grow at rates of 1.7 ”m/s, but are generally short-lived. Instead of depolymerization at their ends, actin filaments are disassembled by severing activity. Remodeling of the cortical actin array also features filament buckling and straightening events. These observations indicate a mechanism inconsistent with treadmilling. Instead, cortical actin filament dynamics resemble the stochastic dynamics of an in vitro biomimetic system for actin assembly

    Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils

    Get PDF
    ACKNOWLEDGEMENTS This study was supported by the project “C and N models inter-comparison and improvement to assess management options for GHG mitigation in agro-systems worldwide” (CN-MIP, 2014- 2017), which received funding by a multi-partner call on agricultural greenhouse gas research of the Joint Programming Initiative ‘FACCE’ through national financing bodies. S. Recous, R. Farina, L. Brilli, G. Bellocchi and L. Bechini received mobility funding by way of the French Italian GALILEO programme (CLIMSOC project). The authors acknowledge particularly the data holders for the Long Term Bare-Fallows, who made their data available and provided additional information on the sites: V. Romanenkov, B.T. Christensen, T. KĂ€tterer, S. Houot, F. van Oort, A. Mc Donald, as well as P. BarrĂ©. The input of B. Guenet and C. Chenu contributes to the ANR “Investissements d’avenir” programme with the reference CLAND ANR-16-CONV-0003. The input of P. Smith and C. Chenu contributes to the CIRCASA project, which received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no 774378 and the projects: DEVIL (NE/M021327/1) and Soils‐R‐GRREAT (NE/P019455/1). The input of B. Grant and W. Smith was funded by Science and Technology Branch, Agriculture and Agri-Food Canada, under the scope of project J-001793. The input of A. Taghizadeh-Toosi was funded by Ministry of Environment and Food of Denmark as part of the SINKS2 project. The input of M. Abdalla contributes to the SUPER-G project, which received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no 774124.Peer reviewedPostprin

    CAG repeat not polyglutamine length determines timing of Huntington’s disease onset

    Get PDF
    Variable, glutamine-encoding, CAA interruptions indicate that a property of the uninterrupted HTT CAG repeat sequence, distinct from the length of huntingtin’s polyglutamine segment, dictates the rate at which Huntington’s disease (HD) develops. The timing of onset shows no significant association with HTT cis-eQTLs but is influenced, sometimes in a sex-specific manner, by polymorphic variation at multiple DNA maintenance genes, suggesting that the special onset-determining property of the uninterrupted CAG repeat is a propensity for length instability that leads to its somatic expansion. Additional naturally occurring genetic modifier loci, defined by GWAS, may influence HD pathogenesis through other mechanisms. These findings have profound implications for the pathogenesis of HD and other repeat diseases and question the fundamental premise that polyglutamine length determines the rate of pathogenesis in the “polyglutamine disorders.

    Investigation of two Fermi-LAT gamma-ray blazars coincident with high-energy neutrinos detected by IceCube

    Get PDF
    After the identification of the gamma-ray blazar TXS 0506+056 as the first compelling IceCube neutrino source candidate, we perform a systematic analysis of all high-energy neutrino events satisfying the IceCube realtime trigger criteria. We find one additional known gamma-ray source, the blazar GB6 J1040+0617, in spatial coincidence with a neutrino in this sample. The chance probability of this coincidence is 30% after trial correction. For the first time, we present a systematic study of the gamma-ray flux, spectral and optical variability, and multi-wavelength behavior of GB6 J1040+0617 and compare it to TXS 0506+056. We find that TXS 0506+056 shows strong flux variability in the Fermi-LAT gamma-ray band, being in an active state around the arrival of IceCube-170922A, but in a low state during the archival IceCube neutrino flare in 2014/15. In both cases the spectral shape is statistically compatible (≀2σ\leq 2\sigma) with the average spectrum showing no indication of a significant relative increase of a high-energy component. While the association of GB6 J1040+0617 with the neutrino is consistent with background expectations, the source appears to be a plausible neutrino source candidate based on its energetics and multi-wavelength features, namely a bright optical flare and modestly increased gamma-ray activity. Finding one or two neutrinos originating from gamma-ray blazars in the given sample of high-energy neutrinos is consistent with previously derived limits of neutrino emission from gamma-ray blazars, indicating the sources of the majority of cosmic high-energy neutrinos remain unknown.Comment: 22 pages, 11 figures, 2 Table

    Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes

    Get PDF
    [EN] The existence of diffuse Galactic neutrino production is expected from cosmic-ray interactions with Galactic gas and radiation Âżelds. Thus, neutrinos are a unique messenger offering the opportunity to test the products of Galactic cosmic-ray interactions up to energies of hundreds of TeV. Here we present a search for this production using ten years of Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) track and shower data, as well as seven years of IceCube track data. The data are combined into a joint likelihood test for neutrino emission according to the KRAg model assuming a 5 PeV per nucleon Galactic cosmic-ray cutoff. No signiÂżcant excess is found. As a consequence, the limits presented in this Letter start constraining the model parameter space for Galactic cosmic-ray production and transport.Albert, A.; Andre, M.; Anghinolfi, M.; Ardid RamĂ­rez, M.; Aubert, J-.; Aublin, J.; Avgitas, T.... (2018). Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes. The Astrophysical Journal. 868(2):1-7. https://doi.org/10.3847/2041-8213/aaeecfS178682Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., 
 Anderson, T. (2017). Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube. The Astrophysical Journal, 846(2), 136. doi:10.3847/1538-4357/aa8508Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., 
 Archinger, M. (2015). A COMBINED MAXIMUM-LIKELIHOOD ANALYSIS OF THE HIGH-ENERGY ASTROPHYSICAL NEUTRINO FLUX MEASURED WITH ICECUBE. The Astrophysical Journal, 809(1), 98. doi:10.1088/0004-637x/809/1/98Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., 
 Anderson, T. (2017). All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. The Astrophysical Journal, 835(2), 151. doi:10.3847/1538-4357/835/2/151Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., 
 Anderson, T. (2017). Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data. The Astrophysical Journal, 849(1), 67. doi:10.3847/1538-4357/aa8dfbAartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., 
 Ansseau, I. (2017). The IceCube Neutrino Observatory: instrumentation and online systems. Journal of Instrumentation, 12(03), P03012-P03012. doi:10.1088/1748-0221/12/03/p03012Ackermann, M., Ajello, M., Atwood, W. B., Baldini, L., Ballet, J., Barbiellini, G., 
 Berenji, B. (2012). FERMI-LAT OBSERVATIONS OF THE DIFFUSE Îł-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM. The Astrophysical Journal, 750(1), 3. doi:10.1088/0004-637x/750/1/3AdriĂĄn-MartĂ­nez, S., Ageron, M., Aguilar, J. A., Samarai, I. A., Albert, A., AndrĂ©, M., 
 Ardid, M. (2012). The positioning system of the ANTARES Neutrino Telescope. Journal of Instrumentation, 7(08), T08002-T08002. doi:10.1088/1748-0221/7/08/t08002Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., AndrĂ©, M., 
 Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103Ahn, H. S., Allison, P., Bagliesi, M. G., Beatty, J. J., Bigongiari, G., Childers, J. T., 
 Zinn, S. Y. (2010). DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA. The Astrophysical Journal, 714(1), L89-L93. doi:10.1088/2041-8205/714/1/l89Albert, A., AndrĂ©, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., 
 Basa, S. (2017). New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope. Physical Review D, 96(6). doi:10.1103/physrevd.96.062001Antoni, T., Apel, W. D., Badea, A. F., Bekk, K., Bercuci, A., BlĂŒmer, J., 
 Zabierowski, J. (2005). KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems. Astroparticle Physics, 24(1-2), 1-25. doi:10.1016/j.astropartphys.2005.04.001Apel, W. D., Arteaga-VelĂĄzquez, J. C., Bekk, K., Bertaina, M., BlĂŒmer, J., Bozdog, H., 
 Cossavella, F. (2013). KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays. Astroparticle Physics, 47, 54-66. doi:10.1016/j.astropartphys.2013.06.004Gaggero, D., Grasso, D., Marinelli, A., Taoso, M., & Urbano, A. (2017). Diffuse Cosmic Rays Shining in the Galactic Center: A Novel Interpretation of H.E.S.S. and Fermi-LAT Îł -Ray Data. Physical Review Letters, 119(3). doi:10.1103/physrevlett.119.031101Gaggero, D., Grasso, D., Marinelli, A., Urbano, A., & Valli, M. (2015). THE GAMMA-RAY AND NEUTRINO SKY: A CONSISTENT PICTURE OF FERMI -LAT, MILAGRO, AND ICECUBE RESULTS. The Astrophysical Journal, 815(2), L25. doi:10.1088/2041-8205/815/2/l25Gaggero, D., Urbano, A., Valli, M., & Ullio, P. (2015). Gamma-ray sky points to radial gradients in cosmic-ray transport. Physical Review D, 91(8). doi:10.1103/physrevd.91.083012Vladimirov, A. E., Digel, S. W., JĂłhannesson, G., Michelson, P. F., Moskalenko, I. V., Nolan, P. L., 
 Strong, A. W. (2011). GALPROP WebRun: An internet-based service for calculating galactic cosmic ray propagation and associated photon emissions. Computer Physics Communications, 182(5), 1156-1161. doi:10.1016/j.cpc.2011.01.01
    • 

    corecore