7 research outputs found

    Current Perspectives on Synthetic Compartments for Biomedical Applications

    Get PDF
    Nano- and micrometer-sized compartments composed of synthetic polymers are designed to mimic spatial and temporal divisions found in nature. Self-assembly of polymers into compartments such as polymersomes, giant unilamellar vesicles (GUVs), layer-by-layer (LbL) capsules, capsosomes, or polyion complex vesicles (PICsomes) allows for the separation of defined environments from the exterior. These compartments can be further engineered through the incorporation of (bio)molecules within the lumen or into the membrane, while the membrane can be decorated with functional moieties to produce catalytic compartments with defined structures and functions. Nanometer-sized compartments are used for imaging, theranostic, and therapeutic applications as a more mechanically stable alternative to liposomes, and through the encapsulation of catalytic molecules, i.e., enzymes, catalytic compartments can localize and act in vivo. On the micrometer scale, such biohybrid systems are used to encapsulate model proteins and form multicompartmentalized structures through the combination of multiple compartments, reaching closer to the creation of artificial organelles and cells. Significant progress in therapeutic applications and modeling strategies has been achieved through both the creation of polymers with tailored properties and functionalizations and novel techniques for their assembly

    Effects of Lipid Tethering in Extremophile-Inspired Membranes on H(+)/OH(-) Flux at Room Temperature.

    No full text
    This work explores the proton/hydroxide permeability (PH+/OH-) of membranes that were made of synthetic extremophile-inspired phospholipids with systematically varied structural elements. A fluorescence-based permeability assay was optimized to determine the effects on the PH+/OH- through liposome membranes with variations in the following lipid attributes: transmembrane tethering, tether length, and the presence of isoprenoid methyl groups on one or both lipid tails. All permeability assays were performed in the presence of a low concentration of valinomycin (10 nM) to prevent buildup of a membrane potential without artificially increasing the measured PH+/OH-. Surprisingly, the presence of a transmembrane tether did not impact PH+/OH- at room temperature. Among tethered lipid monolayers, PH+/OH- increased with increasing tether length if the number of carbons in the untethered acyl tail was constant. Untethered lipids with two isoprenoid methyl tails led to lower PH+/OH- values than lipids with only one or no isoprenoid tails. Molecular dynamics simulations revealed a strong positive correlation between the probability of observing water molecules in the hydrophobic core of these lipid membranes and their proton permeability. We propose that water penetration as revealed by molecular dynamics may provide a general strategy for predicting proton permeability through various lipid membranes without the need for experimentation

    Surface coatings for solid-state nanopores

    No full text
    corecore