709 research outputs found
Proper weak-coupling approach to the periodic s-d(f) exchange model
The periodic s-d(f) exchange model is characterized by a wide variety of
interesting applications, a simple mathematical structure and a limited number
of reliable approximations which take care of the quantum nature of the
participating spins. We suggest the use of a projection-operator method for
getting information perturbationally, which are not accessible via diagrammatic
approaches. In this paper we present in particular results beyond perturbation
theory, which are obtained such that almost all exactly known limiting cases
are incorporated correctly. We discuss a variety of possible methods and
evaluate their consequences for one-particle properties. These considerations
serve as a guideline for a more effective approach to the model.Comment: 11 pages, 6 figures; accepted by Phys. Rev.
Compaction of Rods: Relaxation and Ordering in Vibrated, Anisotropic Granular Material
We report on experiments to measure the temporal and spatial evolution of
packing arrangements of anisotropic, cylindrical granular material, using
high-resolution capacitive monitoring. In these experiments, the particle
configurations start from an initially disordered, low-packing-fraction state
and under vertical vibrations evolve to a dense, highly ordered, nematic state
in which the long particle axes align with the vertical tube walls. We find
that the orientational ordering process is reflected in a characteristic, steep
rise in the local packing fraction. At any given height inside the packing, the
ordering is initiated at the container walls and proceeds inward. We explore
the evolution of the local as well as the height-averaged packing fraction as a
function of vibration parameters and compare our results to relaxation
experiments conducted on spherically shaped granular materials.Comment: 9 pages incl. 7 figure
Giant magnetothermopower of magnon-assisted transport in ferromagnetic tunnel junctions
We present a theoretical description of the thermopower due to
magnon-assisted tunneling in a mesoscopic tunnel junction between two
ferromagnetic metals. The thermopower is generated in the course of thermal
equilibration between two baths of magnons, mediated by electrons. For a
junction between two ferromagnets with antiparallel polarizations, the ability
of magnon-assisted tunneling to create thermopower depends on the
difference between the size of the majority and
minority band Fermi surfaces and it is proportional to a temperature dependent
factor where is the magnon Debye
energy. The latter factor reflects the fractional change in the net
magnetization of the reservoirs due to thermal magnons at temperature
(Bloch's law). In contrast, the contribution of magnon-assisted
tunneling to the thermopower of a junction with parallel polarizations is
negligible. As the relative polarizations of ferromagnetic layers can be
manipulated by an external magnetic field, a large difference results in a magnetothermopower effect. This
magnetothermopower effect becomes giant in the extreme case of a junction
between two half-metallic ferromagnets, .Comment: 9 pages, 4 eps figure
Sapling size influences shade tolerance ranking among southern boreal tree species
1 Traditional rankings of shade tolerance of trees make little reference to individual size. However, greater respiratory loads with increasing sapling size imply that larger individuals will be less able to tolerate shade than smaller individuals of the same species and that there may be shifts among species in shade tolerance with size. 2 We tested this hypothesis using maximum likelihood estimation to develop individual-tree-based models of the probability of mortality as a function of recent growth rate for seven species: trembling aspen, paper birch, yellow birch, mountain maple, white spruce, balsam fir and eastern white cedar. 3 Shade tolerance of small individuals, as quantified by risk of mortality at low growth, was mostly consistent with traditional shade tolerance rankings such that cedar > balsam fir > white spruce > yellow birch > mountain maple = paper birch > aspen. 4 Differences in growth-dependent mortality were greatest between species in the smallest size classes. With increasing size, a reduced tolerance to shade was observed for all species except trembling aspen and thus species tended to converge in shade tolerance with size. At a given level of radial growth larger trees, apart from aspen, had a higher probability of mortality than smaller trees. 5 Successional processes associated with shade tolerance may thus be most important in the seedling stage and decrease with ontogeny
Viral Load Status Before Switching to Dolutegravir-Containing Antiretroviral Therapy and Associations With Human Immunodeficiency Virus Treatment Outcomes in Sub-Saharan Africa
Background: Dolutegravir is being rolled out globally as part of preferred antiretroviral therapy (ART) regimens, including among treatment-experienced patients. The role of viral load (VL) testing before switching patients already on ART to a dolutegravir-containing regimen is less clear in real-world settings. Methods: We included patients from the International epidemiology Databases to Evaluate AIDS consortium who switched from a nevirapine- or efavirenz-containing regimen to one with dolutegravir. We used multivariable cause-specific hazards regression to estimate the association of the most recent VL test in the 12 months before switching with subsequent outcomes. Results: We included 36 393 patients at 37 sites in 5 countries (Democratic Republic of the Congo, Kenya, Rwanda, Tanzania, Uganda) who switched to dolutegravir from July 2017 through February 2020, with a median follow-up of approximately 11 months. Compared with those who switched with a VL <200 copies/mL, patients without a recent VL test or with a preswitch VL ≥1000 copies/mL had significantly increased hazards of an incident VL ≥1000 copies/mL (adjusted hazard ratio [aHR], 2.89; 95% confidence interval [CI], 1.99-4.19 and aHR, 6.60; 95% CI, 4.36-9.99, respectively) and pulmonary tuberculosis or a World Health Organization clinical stage 4 event (aHR, 4.78; 95% CI, 2.77-8.24 and aHR, 13.97; 95% CI, 6.62-29.50, respectively). Conclusions: A VL test before switching to dolutegravir may help identify patients who need additional clinical monitoring and/or adherence support. Further surveillance of patients who switched to dolutegravir with an unknown or unsuppressed VL is needed
Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions
We study the beam-energy and system-size dependence of \phi meson production
(using the hadronic decay mode \phi -- K+K-) by comparing the new results from
Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4
and 200 GeV measured in the STAR experiment at RHIC. Data presented are from
mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the
transverse momentum distributions for \phi mesons are observed to be similar in
yield and shape for Cu+Cu and Au+Au colliding systems with similar average
numbers of participating nucleons. The \phi meson yields in nucleus-nucleus
collisions, normalised by the average number of participating nucleons, are
found to be enhanced relative to those from p+p collisions with a different
trend compared to strange baryons. The enhancement for \phi mesons is observed
to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations
for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision
energies, the source of enhancement of strange hadrons is related to the
formation of a dense partonic medium in high energy nucleus-nucleus collisions
and cannot be alone due to canonical suppression of their production in smaller
systems.Comment: 20 pages and 5 figure
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events
We present a measurement of the top quark pair ttbar production cross section
in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1}
of data collected by the DO detector at the Fermilab Tevatron Collider. We
select events with one charged lepton (electron or muon), large missing
transverse energy, and at least four jets, and extract the ttbar content of the
sample based on the kinematic characteristics of the events. For a top quark
mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1}
(syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV
The cross section for the inclusive production of isolated photons has been
measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the
Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV
and have pseudorapidity |eta|<0.9. The cross section is compared with the
results from two next-to-leading order perturbative QCD calculations. The
theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.
- …