90 research outputs found

    Plasticity of response by saltmarsh plants to changing environmental conditions

    Get PDF
    There is an urgent need to understand how saltmarsh will respond to the changing environmental conditions that result from climate change and other anthropogenic influences. Saltmarsh response to changing environmental conditions is difficult to predict at the ecosystem level as changes depend on the complex responses of species and communities. I investigated the responses of saltmarsh plants at individual, species and simplified community level to altered environmental conditions, including altering flooding regimes to simulate sea level rise using a newly developed Tidal Inundation Machine, and different nutrient conditions to simulate coastal eutrophication. I measured the expression of functional traits in order to relate plant responses to potential ecosystem functioning. I found that the variation of traits within a species was highly variable, irrespective of treatment and this served to dampen the observed effect of flooding at the community level. The effects of flooding were modified by the addition of nutrients, although this was very context-dependent, and flooding served to modify the intensity and direction of species interactions. I also found that different genotypes had different sensitivities to environmental conditions (flooding and nutrients), even differing in the direction of their response. This has real-world consequences as I found that genetic composition differed between saltmarshes, with variation partially explained by flooding frequency. However, contrary to expectations, restored marshes did not differ from natural sites in their genetic diversity, even two years after restoration. These experiments were facilitated by the development of the Tidal Inundation Machine that was able to reproduce a true tidal cycle, as well as controlling for nutrient 4 concentrations, enabling me to study the combined effects of increased tidal inundation and nutrient enrichment. Overall, I found substantial variation in the responses of individual plants to changes in the environment. Sources of variation included neighbourhood composition, intra-specific trait variability and genotype. Collectively these represent a hierarchy of predictability of responses. This complexity will impact on our ability to predict responses to future change and highlights the need to better understand plants at the individual level before we can predict the response across entire ecosystems

    Species interactions modulate the response of saltmarsh plants to flooding

    Get PDF
    Background and aims The vegetation that grows on coastal wetlands is important for ecosystem functioning, a role mediated by plant traits. These traits can be affected by environmental stressors and by the competitive environment the plant experiences. The relative importance of these influences on different traits is poorly understood and, despite theoretical expectations for how factors may interact, empirical data are conflicting. Our aims are to determine the effect of flooding, species composition and their interaction on plant functional traits, and assess the role of biodiversity and species composition in driving community-level responses to flooding. Methods We conducted a factorial glasshouse experiment assessing the effects of species composition (all combinations of three saltmarsh species, Aster tripolium, Plantagomaritima and Triglochin maritima) and flooding (immersion of roots) on a suite of functional traits. We also related biomass in mixed species pots to that expected from monocultures to assess how species interactions affect community-level biomass. Key results Species composition frequently interacted with flooding to influence functional traits and community level properties. However, there was also considerable intraspecific variability in traits within each treatment. Generally, effects of flooding were more pronounced for belowground than aboveground biomass, while composition affected aboveground biomass more than belowground biomass. We found both negative and positive interactions between species (indicated by differences in above and belowground biomass from expectations under monoculture), meaning that composition was an important determinate of community function. Conclusions While the effect of flooding alone on traits was relatively weak, it interacted with species composition to modify the response of both individual plants and communities. Our results suggest that responses to increased flooding will be complex and depend on neighbourhood species interactions. Furthermore, intraspecific trait variability is a potential resource that may dampen the effects of changes in flooding regime

    Theoretical studies of the historical development of the accounting discipline: a review and evidence

    Get PDF
    Many existing studies of the development of accounting thought have either been atheoretical or have adopted Kuhn's model of scientific growth. The limitations of this 35-year-old model are discussed. Four different general neo-Kuhnian models of scholarly knowledge development are reviewed and compared with reference to an analytical matrix. The models are found to be mutually consistent, with each focusing on a different aspect of development. A composite model is proposed. Based on a hand-crafted database, author co-citation analysis is used to map empirically the entire literature structure of the accounting discipline during two consecutive time periods, 1972–81 and 1982–90. The changing structure of the accounting literature is interpreted using the proposed composite model of scholarly knowledge development

    The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect

    Full text link
    We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives sigma_8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find sigma_8 = 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give sigma_8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.Comment: 12 pages, 7 figures. Submitted to Ap

    The Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected via the Sunyaev-Zel'dovich Effect

    Get PDF
    We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps, coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8e14 Msun, with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1e15 Msun and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton, and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically-significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the Universe.Comment: 20 pages, 15 figures, 6 tables. Accepted for publication in ApJ. Higher resolution figures available at: http://peumo.rutgers.edu/~felipe/e-prints

    Production of a reference transcriptome and transcriptomic database (PocilloporaBase) for the cauliflower coral, Pocillopora damicornis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Motivated by the precarious state of the world's coral reefs, there is currently a keen interest in coral transcriptomics. By identifying changes in coral gene expression that are triggered by particular environmental stressors, we can begin to characterize coral stress responses at the molecular level, which should lead to the development of more powerful diagnostic tools for evaluating the health of corals in the field. Furthermore, the identification of genetic variants that are more or less resilient in the face of particular stressors will help us to develop more reliable prognoses for particular coral populations. Toward this end, we performed deep mRNA sequencing of the cauliflower coral, <it>Pocillopora damicornis</it>, a geographically widespread Indo-Pacific species that exhibits a great diversity of colony forms and is able to thrive in habitats subject to a wide range of human impacts. Importantly, <it>P. damicornis </it>is particularly amenable to laboratory culture. We collected specimens from three geographically isolated Hawaiian populations subjected to qualitatively different levels of human impact. We isolated RNA from colony fragments ("nubbins") exposed to four environmental stressors (heat, desiccation, peroxide, and hypo-saline conditions) or control conditions. The RNA was pooled and sequenced using the 454 platform.</p> <p>Description</p> <p>Both the raw reads (n = 1, 116, 551) and the assembled contigs (n = 70, 786; mean length = 836 nucleotides) were deposited in a new publicly available relational database called PocilloporaBase <url>http://www.PocilloporaBase.org</url>. Using BLASTX, 47.2% of the contigs were found to match a sequence in the NCBI database at an E-value threshold of ≤.001; 93.6% of those contigs with matches in the NCBI database appear to be of metazoan origin and 2.3% bacterial origin, while most of the remaining 4.1% match to other eukaryotes, including algae and amoebae.</p> <p>Conclusions</p> <p><it>P. damicornis </it>now joins the handful of coral species for which extensive transcriptomic data are publicly available. Through PocilloporaBase <url>http://www.PocilloporaBase.org</url>, one can obtain assembled contigs and raw reads and query the data according to a wide assortment of attributes including taxonomic origin, PFAM motif, KEGG pathway, and GO annotation.</p

    The environments of luminous radio galaxies and type-2 quasars

    Get PDF
    We present the results of a comparison between the environments of (1) a complete sample of 46 southern 2-Jy radio galaxies at intermediate redshifts (0.05 < z < 0.7), (2) a complete sample of 20 radio-quiet type-2 quasars (0.3 ≤ z ≤ 0.41), and (3) a control sample of 107 quiescent early-type galaxies at 0.2 ≤ z < 0.7 in the Extended Groth Strip. The environments have been quantified using angular clustering amplitudes (Bgq) derived from deep optical imaging data. Based on these comparisons, we discuss the role of the environment in the triggering of powerful radio-loud and radio-quiet quasars. When we compare the Bgq distributions of the type-2 quasars and quiescent early-type galaxies, we find no significant difference between them. This is consistent with the radio-quiet quasar phase being a short-lived but ubiquitous stage in the formation of all massive early-type galaxies. On the other hand, powerful radio galaxies are in denser environments than the quiescent population, and this difference between distributions of Bgq is significant at the 3σ level. This result supports a physical origin of radio loudness, with high-density gas environments favouring the transformation of active galactic nucleus (AGN) power into radio luminosity, or alternatively, affecting the properties of the supermassive black holes themselves. Finally, focusing on the radio-loud sources only, we find that the clustering of weak-line radio galaxies (WLRGs) is higher than the strong-line radio galaxies (SLRGs), constituting a 3σ result. 82 per cent of the 2-Jy WLRGs are in clusters, according to our definition (Bgq ≳ 400), versus only 31 per cent of the SLRGs

    Pattern of childhood burn injuries and their management outcome at Bugando Medical Centre in Northwestern Tanzania

    Get PDF
    Burn injuries constitute a major public health problem and are the leading cause of childhood morbidity and mortality worldwide. There is paucity of published data on childhood burn injuries in Tanzania, particularly the study area. This study was conducted to describe the pattern of childhood burn injuries in our local setting and to evaluate their management outcome. A cross sectional study was conducted at Bugando Medical Centre (in Northwestern Tanzania) over a 3-year period from January 2008 to December 2010. Data was collected using a pre-tested coded questionnaire and statistical analyses performed using SPSS software version 15.0. A total of 342 burned children were studied. Males were mainly affected. Children aged = 2 were the majority accounting for 45.9% of cases. Intentional burn injuries due to child abuse were reported in 2.9% of cases. Scald was the most common type of burns (56.1%). The trunk was the most commonly involved body region (57.3%). Majority of patients (48.0%) sustained superficial burns. Eight (2.3%) patients were HIV positive. Most patients (89.8%) presented to the hospital later than 24 h. The rate of burn wound infection on admission and on 10th day were 32.4% and 39.8% respectively.Staphylococcus aureus were more common on admission wound swabs, with Pseudomonas aeruginosa becoming more evident after 10th day. MRSA was detected in 19.2% of Staphylococcus aureus. Conservative treatment was performed in 87.1% of cases. Surgical treatment mainly skin grafting (65.9%) was performed in 44 (12.9%) of patients. The overall average of the length of hospital stay (LOS) was 22.12 ± 16.62 days. Mortality rate was 11.7%. Using multivariate logistic regression analysis; age of the patient, type of burn, delayed presentation, clothing ignition, %TBSA and severity of burn were found to be significantly associated with LOS (P < 0.001), whereas mortality rate was found to be independently and significantly related to the age of the patient, type of burn, HIV positive with stigmata of AIDS, CD4 count, inhalation injury, %TBSA and severity of burn (P < 0.001). Childhood burn injuries still remain a menace in our environment with virtually unacceptable high morbidity and mortality. There is need for critical appraisal of the preventive measures and management principles currently being practiced

    Replication in Cells of Hematopoietic Origin Is Necessary for Dengue Virus Dissemination

    Get PDF
    Dengue virus (DENV) is a mosquito-borne pathogen for which no vaccine or specific therapeutic is available. Although it is well established that dendritic cells and macrophages are primary sites of DENV replication, it remains unclear whether non-hematopoietic cellular compartments serve as virus reservoirs. Here, we exploited hematopoietic-specific microRNA-142 (miR-142) to control virus tropism by inserting tandem target sites into the virus to restrict replication exclusively in this cell population. In vivo use of this virus restricted infection of CD11b+, CD11c+, and CD45+ cells, resulting in a loss of virus spread, regardless of the route of administration. Furthermore, sequencing of the targeted virus population that persisted at low levels, demonstrated total excision of the inserted miR-142 target sites. The complete conversion of the virus population under these selective conditions suggests that these immune cells are the predominant sources of virus amplification. Taken together, this work highlights the importance of hematopoietic cells for DENV replication and showcases an invaluable tool for the study of virus pathogenesis
    corecore