275 research outputs found

    Creating realistic models based on combined forward modeling and tomographic inversion of seismic profiling data

    Get PDF
    Amplitudes and shapes of seismic patterns derived from tomographic images often are strongly biased with respect to real structures in the earth. In particular, tomography usually provides continuous velocity distributions, whereas major velocity changes in the earth often occur on first-order interfaces. We propose an approach that constructs a realistic structure of the earth that combines forward modeling and tomographic inversion (FM&TI). Using available a priori information, we first construct a synthetic model with realistic patterns. Then we compute synthetic times and invert them using the same tomographic code and the same parameters as in the case of observed data processing. We compare the reconstruction result with the tomographicimage of observed data inversion. If a discrepancy is observed, we correct the synthetic model and repeat the FM&TI process. After several trials, we obtain similar results of synthetic and observed data inversion. In this case, the derived synthetic model adequately represents the real structure of the earth. In a working scheme of this approach, we three authors used two different synthetic models with a realistic setup. One of us created models, but the other two performed the reconstruction with no knowledge of the models. We discovered that the synthetic models derived by FM&TI were closer to the true model than the tomographic inversion result. Our reconstruction results from modeling marine data acquired in the Musicians Seamount Province in the Pacific Ocean indicate the capacity and limitations of FM&TI

    High fidelity: extra-pair fertilisations in eight Charadrius plover species are not associated with parental relatedness or social mating system

    Get PDF
    Extra-pair paternity is a common reproductive strategy in many bird species. However, it remains unclear why extra-pair paternity occurs and why it varies among species and populations. Plovers (Charadrius spp.) exhibit considerable variation in reproductive behaviour and ecology, making them excellent models to investigate the evolution of social and genetic mating systems. We investigated inter- and intra-specific patterns of extra-pair parentage and evaluated three major hypotheses explaining extra-pair paternity using a comparative approach based on the microsatellite genotypes of 2049 individuals from 510 plover families sampled from twelve populations that constituted eight species. Extra-pair paternity rates were very low (0 to 4.1% of chicks per population). No evidence was found in support of the sexual conflict or genetic compatibility hypotheses, and there was no seasonal pattern of extra-pair paternity (EPP). The low prevalence of EPP is consistent with a number of alternative hypotheses, including the parental investment hypothesis, which suggests that high contribution to care by males restricts female plovers from engaging in extra-pair copulations. Further studies are needed to critically test the importance of this hypothesis for mate choice in plovers

    Geophysical structure of the Southern Alps orogen, South Island, New Zealand

    Get PDF
    The central part of the South Island of New Zealand is a product of the transpressive continental collision of the Pacific and Australian plates during the past 5 million years, prior to which the plate boundary was largely transcurrent for over 10 My. Subduction occurs at the north (west dipping) and south (east dipping) of South Island. The deformation is largely accommodated by the ramping up of the Pacific plate over the Australian plate and near-symmetric mantle shortening. The initial asymmetric crustal deformation may be the result of an initial difference in lithospheric strength or an inherited suture resulting from earlier plate motions. Delamination of the Pacific plate occurs resulting in the uplift and exposure of mid-crustal rocks at the plate boundary fault (Alpine fault) to form a foreland mountain chain. In addition, an asymmetric crustal root (additional 8 - 17 km) is formed, with an underlying mantle downwarp. The crustal root, which thickens southwards, comprises the delaminated lower crust and a thickened overlying middle crust. Lower crust is variable in thickness along the orogen, which may arise from convergence in and lower lithosphere extrusion along the orogen. Low velocity zones in the crust occur adjacent to the plate boundary (Alpine fault) in the Australian and Pacific plates, where they are attributed to fracturing of the upper crust as a result of flexural bending for the Australian plate and to high pressure fluids in the crust derived from prograde metamorphism of the crustal rocks for the Pacific plate

    High fidelity: extra-pair fertilisations in eight Charadrius plover species are not associated with parental relatedness or social mating system

    Get PDF
    Extra-pair paternity is a common reproductive strategy in many bird species. However, it remains unclear why extra-pair paternity occurs and why it varies among species and populations. Plovers (Charadrius spp.) exhibit considerable variation in reproductive behaviour and ecology, making them excellent models to investigate the evolution of social and genetic mating systems. We investigated inter- and intra-specific patterns of extra-pair parentage and evaluated three major hypotheses explaining extra-pair paternity using a comparative approach based on the microsatellite genotypes of 2049 individuals from 510 plover families sampled from twelve populations that constituted eight species. Extra-pair paternity rates were very low (0 to 4.1% of chicks per population). No evidence was found in support of the sexual conflict or genetic compatibility hypotheses, and there was no seasonal pattern of extra-pair paternity (EPP). The low prevalence of EPP is consistent with a number of alternative hypotheses, including the parental investment hypothesis, which suggests that high contribution to care by males restricts female plovers from engaging in extra-pair copulations. Further studies are needed to critically test the importance of this hypothesis for mate choice in plovers

    Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles

    Get PDF
    Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics

    A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions

    Get PDF
    Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact
    corecore