22 research outputs found

    Citizen science breathes new life into participatory agricultural research : A review

    Get PDF
    Participatory research can improve the efficiency, effectiveness, and scope of research processes, and foster social inclusion, empowerment and sustainability. Yet despite four decades of agricultural research institutions exploring and developing methods for participatory research, it has never become mainstream in the agricultural technology development cycle. Citizen science promises an innovative approach to participation in research, using the unique facilities of new digital technologies, but its potential in agricultural research participation has not been systematically probed. To this end, we conducted a critical literature review. We found that citizen science opens up four opportunities for creatively reshaping research: i) new possibilities for interdisciplinary collaboration, ii) rethinking configurations of socio-computational systems, iii) research on democratization of science more broadly, and iv) new accountabilities. Citizen science also brings a fresh perspective on the barriers to institutionalizing participation in the agricultural sciences. Specifically, we show how citizen science can reconfigure cost-motivation-accountability combinations using digital tools, open up a larger conceptual space of experimentation, and stimulate new collaborations. With appropriate and persistent institutional support and investment, citizen science can therefore have a lasting impact on how agricultural science engages with farming communities and wider society, and more fully realize the promises of participation

    Diffuse coronary artery disease in diabetic patients: fact or fiction?

    No full text

    Ss-LrpB, a novel Lrp-like regulator of Sulfolobus solfataricus P2, binds cooperatively to three conserved targets in its own control region

    No full text
    Ss-LrpB, a novel Lrp-like DMA-binding protein from the hyperthermophilic crenarchaeon Sulfolobus solfataricus, was shown to bind cooperatively to three regularly spaced targets in its own control region, with as consensus the 15 bp palindrome 5′-TTGYAW WWWWTRCAA-3′. Binding to the border sites occurred with high affinity; the target in the middle proved to be a low affinity site which is stably bound only when both flanking sites are occupied. Ss-LrpB contacts two major groove segments and the intervening minor groove of each site, all aligned on one face of the helix. The operator shows intrinsic bending and is increasingly deformed upon binding of Ss-LrpB to one, two and three targets. Complex formation relies therefore on DNA conformability, protein-DMA and protein-protein contacts. Mobility-shift assays and in gel footprinting indicate that Ss-LrpB and the transcription factors TATA-box binding protein (TBP) and transcription factor B (TFB) can bind simultaneously to the control region. Based on these findings we present a model for the construction of the higher order nucleoprotein complexes and a hypothesis for the autoregulatory process. The latter is based on the concentration-dependent formation of distinct complexes exhibiting different stoichiometries and conformations, which could positively and negatively affect promoter activity.SCOPUS: ar.jFLWINinfo:eu-repo/semantics/publishe

    High resolution contact probing of the Lrp-like DNA-binding protein Ss-Lrp from the hyperthermoacidophilic crenarchaeote Sulfolobus solfataricus P2

    No full text
    Ss-Lrp, from Sulfolobus solfataricus, is an archaeal homologue of the global bacterial regulator Lrp (Leucine-responsive regulatory protein), which out of all genome-encoded proteins is most similar to Escherichia coli Lrp (E-value of 5.6 e-14). The recombinant protein has been purified as a 68 kDa homotetramer. The specific binding of Ss-Lrp to its own control region is suggestive of negative autoregulation. A high resolution contact map of Ss-Lrp binding was established by DNase I and hydroxyl radical footprinting, small non-intercalating groove-specific ligand-binding interference, and various base-specific premodification and base removal binding interference techniques. We show that Ss-Lrp binds one face of the DNA helix and establishes the most salient contacts with two major groove segments and the intervening minor groove, in a region that overlaps the TATA-box and BRE promoter elements. Therefore, Ss-Lrp most likely exerts autoregulation by preventing promoter recognition by TBP and TFB. Moreover, the results demonstrate profound Ss-Lrp induced structural alterations of sequence stretches flanking the core contact site, and reveal that the deformability of these regions significantly contributes to binding selectivity.SCOPUS: ar.jFLWINinfo:eu-repo/semantics/publishe
    corecore