103 research outputs found
DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains
List of genes down-regulated in both W6nk2 and Zhenong8 after 15Â days exposure to 5Â ÎźM Cd. (DOC 130 kb
Coarse graining ππ scattering
We carry out an analysis of ππ scattering in the
I J = 00, 11 and 20 channels in configuration space up to
a maximal center-of-mass energy
√
s = 1.4 GeV. We separate
the interaction into two regions marked by an elementarity
radius of the system; namely, a long distance region
above which pions can be assumed to interact as elementary
particles and a short distance region where many physical
effects cannot be disentangled. The long distance interaction
is described by chiral dynamics, where a two-pionexchange
potential is identified, computed and compared to
lattice calculations. The short distance piece corresponds to
a coarse grained description exemplified by a superposition
of delta-shell potentials sampling the interaction with the
minimal wavelength. We show how the so constructed nonperturbative
scattering amplitude complies with the proper
analytic structure, allowing for an explicit N/D type decomposition
in terms of the corresponding Jost functions and
fulfilling dispersion relations without subtractions. We also
address renormalization issues in coordinate space and investigate
the role of crossing when fitting the scattering amplitudes
above and below threshold to Roy-equation results. At
higher energies, we show how inelasticities can be described
by one single complex and energy dependent parameter. A
successful description of the data can be achieved with a
minimal number of fitting parameters, suggesting that coarse
graining is a viable approach to analyze hadronic processes.Work partially supported by Spanish MINEICO and European FEDER
funds (grants FIS2014-59386-P, FIS2017-85053-C2-1-P and FPA2015-
64041-C2-1-P), Junta de Andalucía (grant FQM-225) and the Swiss
National Science Foundation
TcOPT3, a Member of Oligopeptide Transporters from the Hyperaccumulator Thlaspi caerulescens, Is a Novel Fe/Zn/Cd/Cu Transporter
BACKGROUND: Thlaspi caerulescens is a natural selected heavy metal hyperaccumulator that can not only tolerate but also accumulate extremely high levels of heavy metals in the shoots. Thus, to identify the transportors involved in metal long-distance transportation is very important for understanding the mechanism of heavy metal accumulation in this hyperaccumulator. METHODOLOGY/PRINCIPAL FINDINGS: We cloned and characterized a novel gene TcOPT3 of OPT family from T. caerulescens. TcOPT3 was pronouncedly expressed in aerial parts, including stem and leaf. Moreover, in situ hybridization analyses showed that TcOPT3 expressed in the plant vascular systems, especially in the pericycle cells that may be involved in the long-distance transportation. The expression of TcOPT3 was highly induced by iron (Fe) and zinc (Zn) deficiency, especially in the stem and leaf. Sub-cellular localization showed that TcOPT3 was a plasma membrane-localized protein. Furthermore, heterogonous expression of TcOPT3 by mutant yeast (Saccharomyces cerevisiae) complementation experiments demonstrated that TcOPT3 could transport Fe(2+) and Zn(2+). Moreover, expression of TcOPT3 in yeast increased metal (Fe, Zn, Cu and Cd) accumulation and resulted in an increased sensitivity to cadmium (Cd) and copper (Cu). CONCLUSIONS: Our data demonstrated that TcOPT3 might encode an Fe/Zn/Cd/Cu influx transporter with broad-substrate. This is the first report showing that TcOPT3 may be involved in metal long-distance transportation and contribute to the heavy metal hyperaccumulation
Bioinformatic Characterization of P-Type ATPases Encoded Within the Fully Sequenced Genomes of 26 Eukaryotes
P-type ATPases play essential roles in numerous processes, which in humans include nerve impulse propagation, relaxation of muscle fibers, secretion and absorption in the kidney, acidification of the stomach and nutrient absorption in the intestine. Published evidence suggests that uncharacterized families of P-type ATPases with novel specificities exist. In this study, the fully sequenced genomes of 26 eukaryotes, including animals, plants, fungi and unicellular eukaryotes, were analyzed for P-type ATPases. We report the organismal distributions, phylogenetic relationships, probable topologies and conserved motifs of nine functionally characterized families and 13 uncharacterized families of these enzyme transporters. We have classified these proteins according to the conventions of the functional and phylogenetic IUBMB-approved transporter classification system (www.tcdb.org, Saier et al. in Nucleic Acids Res 34:181–186, 2006; Nucleic Acids Res 37:274–278, 2009)
Identification of Cd-Responsive Genes of Solanum nigrum Seedlings Through Differential Display
In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray Fluorescence Imaging of Fe, Zn, Mn, and Cu
The anomalous magnetic moment of the muon in the Standard Model
194 pages, 103 figures, bib files for the citation references are available from: https://muon-gm2-theory.illinois.eduWe review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including with negligible numerical uncertainty. The electroweak contribution is suppressed by and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at and is due to hadronic vacuum polarization, whereas at the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads and is smaller than the Brookhaven measurement by 3.7. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future-which are also discussed here-make this quantity one of the most promising places to look for evidence of new physics
Comparative expression profiling reveals a role of the root apoplast in local phosphate response
- …
