4,986 research outputs found
The NorduGrid architecture and tools
The NorduGrid project designed a Grid architecture with the primary goal to
meet the requirements of production tasks of the LHC experiments. While it is
meant to be a rather generic Grid system, it puts emphasis on batch processing
suitable for problems encountered in High Energy Physics. The NorduGrid
architecture implementation uses the \globus{} as the foundation for various
components, developed by the project. While introducing new services, the
NorduGrid does not modify the Globus tools, such that the two can eventually
co-exist. The NorduGrid topology is decentralized, avoiding a single point of
failure. The NorduGrid architecture is thus a light-weight, non-invasive and
dynamic one, while robust and scalable, capable of meeting most challenging
tasks of High Energy Physics.Comment: Talk from the 2003 Computing in High Energy Physics and Nuclear
Physics (CHEP03), La Jolla, Ca, USA, March 2003, 9 pages,LaTeX, 4 figures.
PSN MOAT00
Atlas Data-Challenge 1 on NorduGrid
The first LHC application ever to be executed in a computational Grid
environment is the so-called ATLAS Data-Challenge 1, more specifically, the
part assigned to the Scandinavian members of the ATLAS Collaboration. Taking
advantage of the NorduGrid testbed and tools, physicists from Denmark, Norway
and Sweden were able to participate in the overall exercise starting in July
2002 and continuing through the rest of 2002 and the first part of 2003 using
solely the NorduGrid environment. This allowed to distribute input data over a
wide area, and rely on the NorduGrid resource discovery mechanism to find an
optimal cluster for job submission. During the whole Data-Challenge 1, more
than 2 TB of input data was processed and more than 2.5 TB of output data was
produced by more than 4750 Grid jobs.Comment: Talk from the 2003 Computing in High Energy Physics and Nuclear
Physics (CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, 3 ps figure
The propensity of molecules to spatially align in intense light fields
The propensity of molecules to spatially align along the polarization vector
of intense, pulsed light fields is related to readily-accessible parameters
(molecular polarizabilities, moment of inertia, peak intensity of the light and
its pulse duration). Predictions can now be made of which molecules can be
spatially aligned, and under what circumstances, upon irradiation by intense
light. Accounting for both enhanced ionization and hyperpolarizability, it is
shown that {\it all} molecules can be aligned, even those with the smallest
static polarizability, when subjected to the shortest available laser pulses
(of sufficient intensity).Comment: 8 pages, 4 figures, to be submitted to PR
Ionic structure and photoabsorption in medium sized sodium clusters
We present ground-state configurations and photoabsorption spectra of Na-7+,
Na-27+ and Na-41+. Both the ionic structure and the photoabsorption spectra of
medium-size sodium clusters beyond Na-20 have been calculated self-consistently
with a nonspherical treatment of the valence electrons in density functional
theory. We use a local pseudopotential that has been adjusted to experimental
bulk properties and the atomic 3s level of sodium. Our studies have shown that
both the ionic structure of the ground state and the positions of the plasmon
resonances depend sensitively on the pseudopotential used in the calculation,
which stresses the importance of its consistent use in both steps.Comment: 4 pages, 3 figures. Accepted for publication in PRB, tentatively July
15th, 1998 some typos corrected, brought to nicer forma
Thermal expansion in small metal clusters and its impact on the electric polarizability
The thermal expansion coefficients of clusters with and , and
are obtained from {\it ab initio} Born-Oppenheimer LDA molecular dynamics.
Thermal expansion of small metal clusters is considerably larger than that in
the bulk and size-dependent. We demonstrate that the average static electric
dipole polarizability of Na clusters depends linearly on the mean interatomic
distance and only to a minor extent on the detailed ionic configuration when
the overall shape of the electron density is enforced by electronic shell
effects. The polarizability is thus a sensitive indicator for thermal
expansion. We show that taking this effect into account brings theoretical and
experimental polarizabilities into quantitative agreement.Comment: 4 pages, 2 figures, one table. Accepted for publication in Physical
Review Letters. References 10 and 23 update
Classification of phase transitions in small systems
We present a classification scheme for phase transitions in finite systems
like atomic and molecular clusters based on the Lee-Yang zeros in the complex
temperature plane. In the limit of infinite particle numbers the scheme reduces
to the Ehrenfest definition of phase transitions and gives the right critical
indices. We apply this classification scheme to Bose-Einstein condensates in a
harmonic trap as an example of a higher order phase transitions in a finite
system and to small Ar clusters.Comment: 12 pages, 4 figures, accepted for publication in Phys. Rev. Let
CP asymmetry in in a general two-Higgs-doublet model with fourth-generation quarks
We discuss the time-dependent CP asymmetry of decay in an
extension of the Standard Model with both two Higgs doublets and additional
fourth-generation quarks. We show that although the Standard Model with
two-Higgs-doublet and the Standard model with fourth generation quarks alone
are not likely to largely change the effective from the decay of
, the model with both additional Higgs doublet and
fourth-generation quarks can easily account for the possible large negative
value of without conflicting with other experimental
constraints. In this model, additional large CP violating effects may arise
from the flavor changing Yukawa interactions between neutral Higgs bosons and
the heavy fourth generation down type quark, which can modify the QCD penguin
contributions. With the constraints obtained from processes
such as and , this model can lead to the
effective to be as large as in the CP asymmetry of .Comment: 13 pages, 5 figures, references added, to appear in Eur.Phys.J.
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
- …
