777 research outputs found

    Testing Models of Intrinsic Brightness Variations in Type Ia Supernovae, and their Impact on Measuring Cosmological Parameters

    Full text link
    For spectroscopically confirmed Type Ia supernovae we evaluate models of intrinsic brightness variations with detailed data/Monte Carlo comparisons of the dispersion in the following quantities: Hubble-diagram scatter, color difference (B-V-c) between the true B-V color and the fitted color (c) from the SALT-II light curve model, and photometric redshift residual. The data sample includes 251 ugriz light curves from the 3-season Sloan Digital Sky Survey-II, and 191 griz light curves from the Supernova Legacy Survey 3-year data release. We find that the simplest model of a wavelength-independent (coherent) scatter is not adequate, and that to describe the data the intrinsic scatter model must have wavelength-dependent variations. We use Monte Carlo simulations to examine the standard approach of adding a coherent scatter term in quadrature to the distance-modulus uncertainty in order to bring the reduced chi2 to unity when fitting a Hubble diagram. If the light curve fits include model uncertainties with the correct wavelength dependence of the scatter, we find that the bias on the dark energy equation of state parameter ww is negligible. However, incorrect model uncertainties can lead to a significant bias on the distance moduli, with up to ~0.05 mag redshift-dependent variation. For the recent SNLS3 cosmology results we estimate that this effect introduces an additional systematic uncertainty on ww of ~0.02, well below the total uncertainty. However, this uncertainty depends on the samples used, and thus this small ww-uncertainty is not guaranteed in future cosmology results.Comment: accepted by Ap

    GA-SVR and pseudo-position-aided GPS/INS integration during GPS outage

    Get PDF
    The performance of Global Positioning System and Inertial Navigation System (GPS/INS) integrated navigation is reduced when GPS is blocked. This paper proposes an algorithm to overcome the condition where GPS is unavailable. Together with a parameter-optimised Genetic Algorithm (GA), a Support Vector Regression (SVR) algorithm is used to construct the mapping function between the specific force, angular rate increments of INS measurements and the increments of the GPS position. During GPS outages, the real-time pseudo-GPS position is predicted with the mapping function, and the corresponding covariance matrix is estimated by an improved adaptive filtering algorithm. A GPS/INS integration scheme is demonstrated where the vehicle travels along a straight line and around a curve, with respect to both low-speed-stable and high-speed-unstable navigation platforms. The results show that the proposed algorithm provides a better performance when GPS is unavailable

    Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate

    Get PDF
    One-third of the lipid A found in the Escherichia coli outer membrane contains an unsubstituted diphosphate unit at position 1 (lipid A 1-diphosphate). We now report an inner membrane enzyme, LpxT (YeiU), which specifically transfers a phosphate group to lipid A, forming the 1-diphosphate species. 32P-labelled lipid A obtained from lpxT mutants do not produce lipid A 1-diphosphate. In vitro assays with Kdo2-[4′-32P]lipid A as the acceptor shows that LpxT uses undecaprenyl pyrophosphate as the substrate donor. Inhibition of lipid A 1-diphosphate formation in wild-type bacteria was demonstrated by sequestering undecaprenyl pyrophosphate with the cyclic polypeptide antibiotic bacitracin, providing evidence that undecaprenyl pyrophosphate serves as the donor substrate within whole bacteria. LpxT-catalysed phosphorylation is dependent upon transport of lipid A across the inner membrane by MsbA, a lipid A flippase, indicating a periplasmic active site. In conclusion, we demonstrate a novel pathway in the periplasmic modification of lipid A that is directly linked to the synthesis of undecaprenyl phosphate, an essential carrier lipid required for the synthesis of various bacterial polymers, such as peptidoglycan

    On the physical origin of dark matter density profiles

    Full text link
    The radial mass distribution of dark matter haloes is investigated within the framework of the spherical infall model. We present a new formulation of spherical collapse including non-radial motions, and compare the analytical profiles with a set of high-resolution N-body simulations ranging from galactic to cluster scales. We argue that the dark matter density profile is entirely determined by the initial conditions, which are described by only two parameters: the height of the primordial peak and the smoothing scale. These are physically meaningful quantities in our model, related to the mass and formation time of the halo. Angular momentum is dominated by velocity dispersion, and it is responsible for the shape of the density profile near the centre. The phase-space density of our simulated haloes is well described by a power-law profile, rho/sigma^3 = 10^{1.46\pm0.04} (rho_c/Vvir^3) (r/Rvir)^{-1.90\pm0.05}. Setting the eccentricity of particle orbits according to the numerical results, our model is able to reproduce the mass distribution of individual haloes.Comment: 12 pages, 13 figures, submitted to MNRA

    Dual-Tracer Background Subtraction Approach for Fluorescent Molecular Tomography

    Get PDF
    Diffuse fluorescence tomography requires high contrast-to-background ratios to accurately reconstruct inclusions of interest. This is a problem when imaging the uptake of fluorescently labeled molecularly targeted tracers in tissue, which can result in high levels of heterogeneously distributed background uptake. We present a dual-tracer background subtraction approach, wherein signal from the uptake of an untargeted tracer is subtracted from targeted tracer signal prior to image reconstruction, resulting in maps of targeted tracer binding. The approach is demonstrated in simulations, a phantom study, and in a mouse glioma imaging study, demonstrating substantial improvement over conventional and homogenous background subtraction image reconstruction approaches

    A hierarchy of voids: Much ado about nothing

    Get PDF
    We present a model for the distribution of void sizes and its evolution in the context of hierarchical scenarios of gravitational structure formation. We find that at any cosmic epoch the voids have a size distribution which is well-peaked about a characteristic void size which evolves self-similarly in time. This is in distinct contrast to the distribution of virialized halo masses which does not have a small-scale cut-off. In our model, the fate of voids is ruled by two processes. The first process affects those voids which are embedded in larger underdense regions: the evolution is effectively one in which a larger void is made up by the mergers of smaller voids, and is analogous to how massive clusters form from the mergers of less massive progenitors. The second process is unique to voids, and occurs to voids which happen to be embedded within a larger scale overdensity: these voids get squeezed out of existence as the overdensity collapses around them. It is this second process which produces the cut-off at small scales. In the excursion set formulation of cluster abundance and evolution, solution of the cloud-in-cloud problem, i.e., counting as clusters only those objects which are not embedded in larger clusters, requires study of random walks crossing one barrier. We show that a similar formulation of void evolution requires study of a two-barrier problem: one barrier is required to account for voids-in-voids, and the other for voids-in-clouds. Thus, in our model, the void size distribution is a function of two parameters, one of which reflects the dynamics of void formation, and the other the formation of collapsed objects.Comment: 23 pages, 9 figures, submitted to MNRA

    Photometric Properties of Void Galaxies in the Sloan Digital Sky Survey DR7 Data Release

    Full text link
    Using the sample presented in Pan:2011, we analyse the photometric properties of 88,794 void galaxies and compare them to galaxies in higher density environments with the same absolute magnitude distribution. In Pan et al. (2011), we found a total of 1054 dynamically distinct voids in the SDSS with radius larger than 10h^-1 Mpc. The voids are underdense, with delta rho/rho < -0.9 in their centers. Here we study the photometric properties of these void galaxies. We look at the u - r colours as an indication of star formation activity and the inverse concentration index as an indication of galaxy type. We find that void galaxies are statistically bluer than galaxies found in higher density environments with the same magnitude distribution. We examine the colours of the galaxies as a function of magnitude, and we fit each colour distribution with a double-Gaussian model for the red and blue subpopulations. As we move from bright to dwarf galaxies, the population of red galaxies steadily decreases and the fraction of blue galaxies increases in both voids and walls, however the fraction of blue galaxies in the voids is always higher and bluer than in the walls. We also split the void and wall galaxies into samples depending on galaxy type. We find that late type void galaxies are bluer than late type wall galaxies and the same holds for early galaxies. We also find that early type, dwarf void galaxies are blue in colour. We also study the properties of void galaxies as a function of their distance from the center of the void. We find very little variation in the properties, such as magnitude, colour and type, of void galaxies as a function of their location in the void. The only exception is that the dwarf void galaxies may live closer to the center. The centers of voids have very similar density contrast and hence all void galaxies live in very similar density environments (ABRIDGED)Comment: 10 pages, 25 figure

    Density profiles of dark matter haloes on Galactic and Cluster scales

    Full text link
    In the present paper, we improve the "Extended Secondary Infall Model" (ESIM) of Williams et al. (2004) to obtain further insights on the cusp/core problem. The model takes into account the effect of ordered and random angular momentum, dynamical friction and baryon adiabatic contraction in order to obtain a secondary infall model more close to the collapse reality. The model is applied to structures on galactic scales (normal and dwarf spiral galaxies) and on cluster of galaxies scales. The results obtained suggest that angular momentum and dynamical friction are able, on galactic scales, to overcome the competing effect of adiabatic contraction eliminating the cusp. The NFW profile can be reobtained, in our model only if the system is constituted just by dark matter and the magnitude of angular momentum and dynamical friction are reduced with respect to the values predicted by the model itself. The rotation curves of four LSB galaxies from de Blok & Bosma (2002) are compared to the rotation curves obtained by the model in the present paper obtaining a good fit to the observational data. On scales smaller than 1011h1M\simeq 10^{11} h^{-1} M_{\odot} the slope α0\alpha \simeq 0 and on cluster scales we observe a similar evolution of the dark matter density profile but in this case the density profile slope flattens to α0.6\alpha \simeq 0.6 for a cluster of 1014h1M\simeq 10^{14} h^{-1} M_{\odot}. The total mass profile, differently from that of dark matter, shows a central cusp well fitted by a NFW model.Comment: 26 pages; 4 figures A&A Accepte

    Toward High-Precision Measures of Large-Scale Structure

    Get PDF
    I review some results of estimation of the power spectrum of density fluctuations from galaxy redshift surveys and discuss advances that may be possible with the Sloan Digital Sky Survey. I then examine the realities of power spectrum estimation in the presence of Galactic extinction, photometric errors, galaxy evolution, clustering evolution, and uncertainty about the background cosmology.Comment: 24 pages, including 11 postscript figures. Uses crckapb.sty (included in submission). To appear in ``Ringberg Workshop on Large-Scale Structure,'' ed D. Hamilton (Kluwer, Amsterdam), p. 39
    corecore