6,385 research outputs found

    Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states

    Full text link
    A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case (N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also nonexistent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart.Comment: Accepted for publication by Physics Letters A, on December 23, 200

    The role of the alloy structure in the magnetic behavior of granular systems

    Get PDF
    The effect of grain size, easy magnetization axis and anisotropy constant distributions in the irreversible magnetic behavior of granular alloys is considered. A simulated granular alloy is used to provide a realistic grain structure for the Monte Carlo simulation of the ZFC-FC curves. The effect of annealing and external field is also studied. The simulation curves are in good agreement with the FC and ZFC magnetization curves measured on melt spun Cu-Co ribbons.Comment: 13 pages, 10 figures, submitted to PR

    How Can Progress Toward Ending the Human Immunodeficiency Virus Epidemic in the United States Be Monitored?

    Get PDF
    The plan for Ending the HIV (human immunodeficiency virus) Epidemic (EHE) in the United States aims to reduce new infections by 75% by 2025 and by 90% by 2030. For EHE to be successful, it is important to accurately measure changes in numbers of new HIV infections after 5 and 10 years (to determine whether the EHE goals have been achieved) but also over shorter timescales (to monitor progress and intensify prevention efforts if required). In this viewpoint, we aim to demonstrate why the method used to monitor progress toward the EHE goals must be carefully considered. We briefly describe and discuss different methods to estimate numbers of new HIV infections based on longitudinal cohort studies, cross-sectional incidence surveys, and routine surveillance data. We particularly focus on identifying conditions under which unadjusted and adjusted estimates based on routine surveillance data can be used to estimate changes in new HIV infections

    Deformed one-quasiparticle states in covariant density functional theory

    Get PDF
    Systematic investigation of the accuracy of the description of the energies of deformed one-quasiparticle states has been performed in covariant density functional theory in actinide and rare-earth mass regions. The sources of the discrepancies between theory and experiment are analyzed. Although some improvements in the description of ground state configurations and one-quasiparticle spectra can be achieved by better parametrization of the relativistic mean field Lagrangian, the analysis suggests that spectroscopic quality of their description can be achieved only in theoretical framework which takes into account particle-vibration coupling.Comment: 7 pages, 4 figure

    Morphology and magnetism of multifunctional nanostructured γ\gamma-Fe2_2O3_3 films: Simulation and experiments

    Get PDF
    This paper introduces a new approach for simulating magnetic properties of nanocomposites comprising magnetic particles embedded in a non-magnetic matrix, taking into account the 3D structure of the system in which particles' positions correctly mimic real samples. The proposed approach develops a multistage simulation procedure in which the size and distribution of particles within the hosting matrix is firstly attained by means of the Cell Dynamic System (CDS) model. The 3D structure provided by the CDS step is further employed in a Monte Carlo (MC) simulation of zero-field-cooled/field-cooled (ZFC/FC) and magnetic hysteresis loops (M×HM \times H curves) for the system. Simulations are aimed to draw a realistic picture of the as-produced ultra-thin films comprising maghemite nanoparticles dispersed in polyaniline. Comparison (ZFC/FC and M×HM \times H curves) between experiments and simulations regarding the maximum of the ZFC curve (TMAXT_{\scriptsize MAX}), remanence (MR/MsM_R/M_s) and coercivity (HCH_C) revealed the great accuracy of the multistage approach proposed here while providing information about the system's morphology and magnetic properties. For a typical sample the value we found experimentally for TMAXT_{\scriptsize MAX} (54 K) was very close to the value provided by the simulation (53 K). For the parameters depending on the nanoparticle clustering the experimental values were consistently lower (MR/MsM_R/M_s = 0.32 and HCH_C = 210 Oe) than the values we found in the simulation (MR/MsM_R/M_s = 0.53 and HCH_C = 274 Oe). Indeed, the approach introduced here is very promising for the design of real magnetic nanocomposite samples with optimized features.Comment: 19 pages (one column), 5 figure

    Investigation of process parameter effect on anisotropic properties of 3D printed sand molds

    Get PDF
    The development of sand mold three-dimensional printing technologies enables the manufacturing of molds without the use of a physical model. However, the effects of the three-dimensional printing process parameters on the mold permeability and strength are not well known, leading the industries to keep old settings until castings have recurring defects. In the present work, the influence of these parameters was experimentally investigated to understand their effect on the mold strength and permeability. Cylindrical and barshaped test specimens were printed to perform, respectively, permeability and bending strength measurements. Experiments were designed to statistically quantify the individual and combined effect of these process parameters. While the binder quantity only affects the mold strength, increasing the recoater speed leads to both greater permeability and reduced strength due to the reduced sand compaction. Recommendations for optimizing some 3D printer settings are proposed to attain predefined mold properties and minimize the anisotropic behavior of the sand mold in regard to both the orientation and the position in the job box
    corecore