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The plan for Ending the HIV (human immunodeficiency virus) Epidemic (EHE) in the United States aims to reduce new infections 
by 75% by 2025 and by 90% by 2030. For EHE to be successful, it is important to accurately measure changes in numbers of new HIV 
infections after 5 and 10 years (to determine whether the EHE goals have been achieved) but also over shorter timescales (to mon-
itor progress and intensify prevention efforts if required). In this viewpoint, we aim to demonstrate why the method used to monitor 
progress toward the EHE goals must be carefully considered. We briefly describe and discuss different methods to estimate numbers 
of new HIV infections based on longitudinal cohort studies, cross-sectional incidence surveys, and routine surveillance data. We 
particularly focus on identifying conditions under which unadjusted and adjusted estimates based on routine surveillance data can 
be used to estimate changes in new HIV infections.
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MONITORING THE US HIV EPIDEMIC

In the midst of the coronavirus disease 2019 (COVID-19) pan-
demic, it is important that the United States does not lose sight 
of its goal of Ending the HIV (human immunodeficiency virus) 
Epidemic (EHE) in the United States within 10 years. In 2019, 
goals were set to reduce the number of new US HIV infections 
by 75% by 2025 and by 90% by 2030 [1]. Efforts are focused on 
4 key strategies: diagnosing people living with HIV as quickly 
as possible to increase awareness of living with HIV and en-
gage them in care; treating people living with HIV rapidly and 
effectively to ensure persistent viral suppression and reduce in-
fectiousness; scaling up prevention interventions including pre-
exposure prophylaxis (PrEP) and syringe services programs to 
prevent new transmissions; and responding to potential HIV 
outbreaks to prevent onward transmission [2]. Given the geo-
graphical heterogeneity of the US HIV epidemic, with varying 
HIV transmission risks and variable HIV intervention cov-
erage, the EHE initiative aimed to initially focus (in phase 1) 

on the 50 counties that accounted for more than 50% of new 
HIV diagnoses in 2016–2017 and 7 states with a high rural HIV 
burden [1]. Expansions to increase the likelihood of reaching 
EHE goals have been proposed [3]. However, these efforts may 
be slowed or reversed by disruptions to health services during 
the COVID-19 pandemic [4, 5], making it vital that progress 
toward EHE is carefully monitored.

Monitoring progress toward the EHE goals will require ac-
curate measurements of changes in numbers of new HIV in-
fections at the national level after 5 and 10 years in order to 
determine whether the intermediate and final EHE goals have 
been achieved and at the county level (in the 50 phase 1 coun-
ties) over shorter timescales to monitor progress and intensify 
prevention efforts if required. However, to date, no details have 
been provided about how changes in the numbers of new HIV 
infections will be measured. Here, we aim to demonstrate why 
the method used to monitor progress toward the EHE goals 
needs to be carefully considered.

In this viewpoint, we briefly describe, discuss, and analyze 
methods often used to estimate numbers of new HIV infections, 
typically based on longitudinal cohort studies, cross-sectional 
incidence surveys, or routine surveillance data, to highlight 
why monitoring progress toward the EHE goals could be chal-
lenging and will require careful consideration and planning 
(Table 1). Given their extensive use, we particularly focus 
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(using mathematical modeling analysis) on identifying condi-
tions under which unadjusted and adjusted estimates based on 
routinely collected data on new HIV diagnoses can be used to 
infer changes in new HIV infections, both when EHE efforts 
are successfully implemented and when they are disrupted, for 
example, due to COVID-19.

LONGITUDINAL COHORT STUDIES

Ideally, HIV incidence rates would be estimated from longitu-
dinal cohort studies, with regular monitoring of progress toward 
EHE goals [6]. However, these studies are time-consuming and 
expensive since they would require enrolling and repeatedly 

Table 1.  Potential Measures to Monitor Progress Toward Achieving the Ending the Human Immunodeficiency Virus Epidemic Goals

Measure Definition Data Source Advantages Disadvantages 

Cohort and cross-sectional studies

HIV incidence (di-
rectly measured)

New HIV in-
fections per 
person-year

Longitudinal co-
hort studies

• Directly measures incidence
•  �Not influenced by changes in HIV 

testing

• Large sample size required when incidence is low
•  �Difficult to obtain a representative cohort of most at-risk populations in concen-

trated epidemic settings
• Expensive and intensive
• Need to conduct a baseline survey before EHE efforts begin
• Behavior change in cohort may mean it underestimates true population incidence

Cross-sectional in-
cidence (recency 
testing)

HIV incidence 
estimated from 
recency testing 
algorithm

Cross-sectional 
studies

•  �Simple and rapid recency assays 
are available

•  �Standardized methods and tools 
have been developed

•  �Not influenced by changes in HIV 
testing

• Large sample size required when incidence is low
•  �Difficult to obtain representative sample of most at-risk population in concentrated 

epidemic settings
• Expensive
• Need to conduct a baseline survey before EHE efforts begin
• � False recency rate may change over time and be affected by changes in antiretroviral 

therapy coverage, reducing accuracy of estimates of changes in new HIV infections

Surveillance data

New HIV diag-
noses, unadjusted

Number of new 
HIV diagnoses 
per year

Surveillance data 
on diagnoses

•  �Data already collected through 
surveillance

• Pre-EHE data available
•  �Reliable estimate after 10 years 

if HIV testing stabilizes after 
first year

• Strongly affected by changes in testing
• Affected by a >12-month reporting delay at the onset
•  �Even without reporting delays, underestimates incidence reduction in the short to 

medium term (≤5 years) if testing increases during EHE efforts with substantial 
variability

• Overestimates incidence reduction if testing decreases during EHE efforts

New HIV diag-
noses of recent 
infection

Number of new 
diagnoses per 
year with re-
cent infection

Surveillance data 
on diagnoses 
and recency 
assays

•  �Data already collected through 
surveillance

• Pre-EHE estimates available
• Only recent infections included

• Strongly affected by changes in testing
• Affected by a >12-month reporting delay at the onset
•  �Even without reporting delays, underestimates incidence reduction in both the 

short and long term (≤10 years), with substantial variability if testing increases 
during EHE efforts

• Limited number of diagnoses with recent infection reduces precision of estimates

New HIV diag-
noses, adjusted 
for time since 
infection

New diagnoses 
per year cor-
rected for time 
since infection 
based on first 
CD4 + cell 
count after 
diagnosis

Surveillance data 
on diagnoses 
and CD4 + cell 
counts with 
a CD4 decay 
model

•  �Data already collected through 
surveillance

• Pre-EHE estimates available
•  �Accounts for time elapsed be-

tween infection and diagnosis
•  �Reliable estimates after 5 and 10 

years if HIV testing stabilizes after 
first year

• Strongly affected by changes in testing
• Affected by a >12-month reporting delay at the onset
•  �Even without reporting delays, underestimates incidence reductions in the short 

term (≤2 years), with substantial variability if testing increases during EHE efforts

New HIV diag-
noses, adjusted 
for testing volume

Number of new 
diagnoses per 
year divided 
by number 
of tests con-
ducted per 
year

Surveillance data 
on diagnoses 
and testing 
data

•  �Diagnosis data and some testing 
data already collected through 
surveillance

•  �Only slightly biased (but uncer-
tain) short-term (2 year) estimates

• Affected by a >12-month reporting delay at the onset
• Variability in estimates of incidence reduction in both the short and long term
•  �Overestimates reductions in incidence after long time periods (5, 10 years) as 

adjusting for number of tests overcompensates for reduced difference between 
numbers of new infections and diagnoses

• Data on all tests conducted not available in the United States

  Viral 
nonsuppression

Proportion of 
those diag-
nosed whose 
most recent 
viral load level 
in past 12 
months was 
above 200 
copies/mL

Surveillance data 
on viral load 
testing

•  �Data already collected through 
surveillance

• Pre-EHE estimates available
•  �Unbiased (but uncertain) short-

term (2 year) estimates

• Affected by a >12-month reporting delay at the onset
• Variability in estimates of incidence reduction in both the short and long term
•  �Underestimates reductions in incidence over the long term (after 5 and 10 years)
•  �Does not capture impact of expanded testing or preexposure prophylaxis on inci-

dence
•  �Viral load testing not done for everyone; changes in the completeness of viral load 

testing data could affect this measure

Recommendations

Triangulate data from multiple sources for estimating reductions in new HIV infections, subject to validity:
• Cross-sectional incidence estimates (where available).
•  �Surveillance data on new diagnoses adjusted for time since infection using CD4 + cell count data (valid if data indicate that rates of HIV testing or time to diagnosis have remained 

stable in recent years).
•  �Surveillance data on the proportion of those diagnosed who are not virally suppressed and/or on diagnoses adjusted for testing volume (where testing volume data available); these 

measures are only recommended for use when time-adjusted diagnoses are not valid, but note uncertainty in them.

Abbreviations: EHE, Ending the HIV Epidemic HIV, human immunodeficiency virus.



testing cohorts of people not living with HIV over the course 
of the initiative. Cohorts would need a fairly large sample size, 
around 1800 followed up for 1 year to detect a 90% reduction 
and 7800 to detect a 50% reduction from a baseline HIV inci-
dence of 1.5% (80% power; see Supplementary Table 1 for illus-
trative sample size calculations). Another issue with longitudinal 
cohort studies is representativeness. Given that the United States 
has a concentrated HIV epidemic, these cohorts would need to 
enroll individuals in the most at-risk populations [7] (eg, men 
who have sex with men [MSM]), who are often hard to reach, 
and to sample representatively. Such cohorts could be recruited 
online or using venue-based or respondent-driven sampling 
methods [8, 9]. Cohort participation may also lead to behavior 
change among participants and compromise the representative-
ness of the cohort [10]. Furthermore, at the county level (for the 
50 counties in phase 1), small numbers of infections may limit 
the precision of cohort-based incidence estimates.

Cohort studies would need to have been conducted prior to 
implementation of EHE strategies to have a baseline against 
which 5- and 10-year incidence estimates could be compared.

CROSS-SECTIONAL SURVEYS

Cross-sectional surveys that test for the “recency” of HIV infec-
tion have been successfully used in large-scale population-based 
surveys in sub-Saharan Africa to estimate HIV incidence [11, 
12]. These surveys involve testing a representative sample of the 
population for HIV infection and then using a testing algorithm 
to detect recent HIV infection among those with HIV [13]. HIV 
incidence is calculated from the number of recent infections de-
tected and the average length of time after infection for which 
the recency testing algorithm gives a positive result. Although 
these surveys avoid some of the problems associated with lon-
gitudinal cohort incidence measures (eg, loss to follow-up, be-
havior change), misclassification due to the false recency rate 
can be of concern (ie, the probability that someone with a 
long-standing HIV infection is classified as having recently ac-
quired HIV) [14]. This rate can vary over time and across popu-
lations if, for example, antiretroviral therapy (ART) coverage or 
average time to ART initiation changes, which would compli-
cate interpretation of estimates [14, 15]. Alternatively, phyloge-
netic approaches to measure viral diversity have recently been 
used in the United States to identify recent infections [16, 17], 
although they may not be more accurate than other recency 
testing algorithms [16], and these approaches may not work 
among those who have already started ART [17]. Importantly, 
in the context of the US EHE initiative, relatively low baseline 
incidence and lack of a clear sampling frame for the most at-risk 
populations also make cross-sectional surveys logistically diffi-
cult, with a large sample size required to estimate change in in-
cidence over time, exceeding 6000 participants to detect a 90% 
reduction from a baseline HIV incidence of 1.5% (80% power; 
Supplementary Table 1).

As for cohort studies, achieving a representative sample of 
most at-risk populations is challenging. As with cohort studies, 
cross-sectional incidence surveys would need to have been con-
ducted prior to the initiation of EHE efforts to have a baseline 
estimate of incidence.

SURVEILLANCE DATA

Given the challenges of estimating HIV incidence from co-
hort and cross-sectional studies, routine surveillance data are 
more often used to estimate HIV incidence in the United States 
[18–20]. In the United States, surveillance data on annual new 
HIV diagnoses and levels of viral suppression among those with 
diagnosed HIV infection are required to be reported. Note that 
an HIV diagnosis reflects a first positive HIV test, which often 
occurs long after HIV infection. Note also that not everyone 
receives a viral load test every year, meaning viral suppression 
data may be incomplete. Surveillance data are available at the 
national, state, and county levels and could be used to calcu-
late baseline estimates of numbers of new HIV infections prior 
to the start of EHE activities as well as estimates during EHE 
efforts. However, surveillance data are typically reported with 
at least a 12-month delay [21], which would hamper real-time 
progress monitoring and delay confirmation that the 5- and 
10-year goals have been achieved.

We argue that even without these delays, using changes in
annual new HIV diagnoses to monitor EHE progress, as previ-
ously used to estimate national incidence declines in the United 
States [19], may over- or underestimate real changes in annual 
HIV infections under different intervention conditions, com-
promising our ability to accurately determine whether the EHE 
goals have been reached.

PERFORMANCE OF SURVEILLANCE MEASURES

To evaluate how well changes in surveillance measures reflect 
changes in numbers of new HIV infections, we use a mathe-
matical model of HIV transmission among MSM in the United 
States to simulate the HIV epidemic, the EHE initiative, and 
collection of surveillance data over 2020–2030 (see Box 1, 
Supplementary Material, Supplementary Figures 1–3, and 
Supplementary Tables 2 and 3 for modeling methods).

Our results show that if the first EHE strategy of increasing 
testing to achieve early diagnosis is successfully implemented, 
the number of new diagnoses may increase even if the actual 
number of new infections declines (Figure 1A). As a result, the 
measure of change in new diagnoses can greatly underestimate 
change in new infections in the short term (Figure 1B). The bias 
is more substantial if a larger proportion of people living with 
HIV become aware of their HIV status during EHE efforts, as 
more new diagnoses are made (Figure 1B). If, after an initial 
increase, testing rates remain high but stable, reductions in 

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab976#supplementary-data
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diagnoses are expected to reflect reductions in new infections 
more closely after 5 years and even more closely after 10 years 
(Figure 1B). Conversely, decreased HIV testing rates during 
EHE efforts, as may occur during the COVID-19 pandemic, can 
lead to changes in diagnoses overestimating true reductions in 
new HIV infections over time (Figures 1C, D).

We consider the following 3 refinements that may detect re-
ductions in new infections more accurately: using only data on 
diagnoses with evidence of recent infection (eg, using past HIV 
testing results [24], recency testing algorithms [25, 26], serolog-
ical diagnostic assays [27], or measures of viral diversity [17]; 
we assess diagnoses within approximately 4 months of infec-
tion; see Supplementary Material for details); adjusting all diag-
noses for time since infection (using data on CD4 + cell count 
at diagnosis, as currently used by the US Centers for Disease 
Control to estimate national and state-level incidence [18]); and 
adjusting diagnoses for the number of tests performed (to take 
into account changes in testing rates [28]; Figure 2, Table 1). We 
focus on situations where testing rates increase early on during 
EHE efforts.

Surprisingly, using data on diagnoses with evidence of recent 
infection can lead to even more substantial and variable under-
estimation of short- and long-term reductions in new infections 
than estimates based on total diagnoses (Figure 2). This may be 
attributed to improved testing that can lead to a larger increase 
in the proportion of infections being diagnosed early, rather 
than in later stages. Using diagnoses with recent infection also 
results in less precise estimates of declines in new HIV infec-
tions as only a subset of infections is detected at this stage.

Adjusting diagnoses for time since infection also leads to 
substantial and variable underestimation of reductions in new 
infections after 2 years. However, it eventually reflects infec-
tion reductions well, and slightly better than unadjusted total 
diagnoses, after 5 and 10 years (Figure 2). The poor short-term 

performance of time-adjusted diagnoses arises because this 
method assumes that the diagnosis delay distribution has re-
mained stable over the preceding 8 years, an assumption that 
is violated if testing rates increase [20]. Note that alternative 
methods for adjusting diagnoses for time since infection using 
recency testing (eg, recency testing algorithms or serological 
diagnostic assays [27]) together with HIV testing history [26, 
29] also assume that testing behavior has remained constant for
several years and are also expected to perform poorly if HIV
testing rates increase [29].

Interestingly, adjusting diagnoses for total number of HIV 
tests performed (when known) [28] produces, on average, less 
biased (but still variable) estimates of true short-term changes in 
new infections than total or time-adjusted diagnoses but more 
biased and variable estimates than total and time-adjusted diag-
noses after 5 and 10 years (Figure 2). In contrast with the other 
diagnoses-based metrics, when testing rates increase, diagnoses 
adjusted for numbers of tests tends to overestimate infection re-
ductions, particularly in the longer term. This occurs because 
higher testing rates lead to numbers of new diagnoses becoming 
more similar to the real numbers of new infections (Figure 1A), 
and the adjustment for the larger numbers of tests performed 
overcompensates for the diminishing gap between diagnoses 
and infections. The utility of this measure may be limited if data 
on total numbers of HIV tests performed are not available.

Given the association reported between increased HIV treat-
ment coverage and decreased HIV incidence [30], we also as-
sessed whether changes in viral suppression could be used to 
estimate changes in new HIV infections over time. Importantly, 
our results suggest that in the short term, reductions in the 
proportion of diagnosed people living with HIV who are not 
virally suppressed performs better than any of the diagnoses-
based surveillance measures explored. This measure gives un-
biased but variable estimates after 2 years; however, it tends 

Box 1.  Mathematical Modeling Approach

To evaluate the performance of surveillance measures for estimating changes in numbers of new HIV infections, we used a 
deterministic, compartmental model of sexual HIV transmission among MSM in the United States [22]. The modeled MSM 
population is stratified by age, race, infection stage, and engagement with HIV care and PrEP use. In the model, diagnosis oc-
curs when an undiagnosed individual living with HIV gets tested, either through routine testing or upon seeking treatment 
for symptoms. The model was parameterized using data from MSM surveillance, US cohort data, other MSM cohort studies, 
clinical trials, and systematic reviews. The model was fitted to MSM-specific demography, HIV prevalence, PrEP use, and care 
continuum data in a Bayesian framework [22, 23].

Different potential EHE initiative scenarios were modeled by running the model many times with different levels of im-
provements to linkage to care, ART and PrEP coverage and retention, alongside different levels of changes in HIV testing rates, 
starting in 2020, with a 1-year scale-up period. In the model, the reduction in new HIV infections was estimated from the 
number of new HIV infections occurring in 2025 or 2030 compared with the number in 2019. Estimated changes in new infec-
tions based on surveillance data were similarly estimated in the model from comparisons of total/adjusted HIV diagnoses made 
(or the proportion of diagnosed MSM who were not virally suppressed) in 2025/2030 vs 2019.

See the Supplementary Material for further details.
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to underestimate reductions in infections over 5 and 10 years 
(Figure 2), partly because it does not capture the effects of in-
creased levels of awareness of living with HIV or increased PrEP 
use. Changes in the completeness of viral load measurements 
could also affect the performance of this measure.

IMPLICATIONS FOR MONITORING EHE

We argue that accurately monitoring the impact of the EHE re-
sponse will be challenging and needs to be carefully planned 
since all incidence estimation methods have limitations, es-
pecially in a context such as the United States with a concen-
trated HIV epidemic and with low and very heterogeneous 
HIV incidence and levels of intervention across counties. The 

performance comparison across data methods and over time 
suggests that multiple measures will be needed to determine 
when the EHE has been achieved nationally, as well as to mon-
itor its progress in the earlier years.

Since successful EHE efforts will likely increase levels of 
awareness of living with HIV initially, early reductions in new 
HIV infections are likely to be underestimated, or even not de-
tected, if estimated by changes in total or time-adjusted diag-
noses. These measures will become more reliable in the longer 
term when testing rates have stabilized. In contrast, using new 
diagnoses adjusted for number of tests (provided that accurate 
information on the number of tests is available) and/or changes 
in levels of viral suppression could provide reasonable estimates 
of changes in new HIV infections initially, but their performance 

2015 2020 2025 2030

0
50

15
0

25
0

(a)

Year

N
um

be
r 

pe
r 

ye
ar

infections
diagnoses

−
10

0
0

50
10

0

(b)

Increase in % who know they are living with HIV
(percentage points)

D
iff

er
en

ce
 in

 r
ed

uc
tio

n 
(d

ia
gn

os
es

−
in

fe
ct

io
ns

)(
pe

rc
en

ta
ge

 p
oi

nt
s)

<5 5−25

after 2 years
after 5 years
after 10 years

2015 2020 2025 2030

0
50

15
0

25
0

(c)

Year

N
um

be
r 

pe
r 

ye
ar

infections
diagnoses

−
10

0
0

50
10

0

(d)

Change in % who know they are living with HIV
(percentage points)

D
iff

er
en

ce
 in

 r
ed

uc
tio

n 
(d

ia
gn

os
es

−
in

fe
ct

io
ns

)(
pe

rc
en

ta
ge

 p
oi

nt
s)

<0 >0

after 2 years
after 5 years
after 10 years

Testing increased

Testing declines

Figure 1.  Modeling results showing performance of unadjusted diagnoses for estimating incidence reductions over time compared with baseline. A, C, Model-based 
trends over time in new infections (red lines) and new HIV diagnoses (thick black lines) before and following the introduction of the combination prevention intervention for a 
single set of fit parameters. B, D, Absolute difference between reductions in cumulative diagnoses and reductions in cumulative infections by change in levels of awareness 
of living with HIV since 2020, for an intervention program scaling up antiretroviral therapy and preexposure prophylaxis over 1 year starting in 2020, with (A, B) concomitant 
increases in HIV testing or (C, D) concomitant declines in HIV testing. Modeling results are shown after 2, 5, and 10 years. Numbers are for a modeled population of 7000 
men who have sex with men. Middle and line box and whisker represent median, 25th, and 75th percentiles and minimum and maximum values, respectively. Dashed and 
dotted lines are at ±10 percentage points and ±20 percentage points from the true reduction in new infections, respectively. Abbreviation: HIV, human immunodeficiency virus.



deteriorates over time. We have shown that estimates of changes 
in infections based on new diagnoses with recent infection are 
not reliable following increases in levels of awareness of living 
with HIV. Our analysis of the reliability of surveillance data 
used an MSM model that did not include other populations. 
We would expect to see similar biases in surveillance measures 
when considering the whole US HIV epidemic, as MSM ac-
count for a large proportion (69%) of new HIV diagnoses in the 
United States and overall levels of awareness of HIV status are 
similar to those seen among MSM [31].

With current reporting delays in the national US surveillance 
system, the feasibility and cost of using cross-sectional recency-
based estimates at a few key time points should be investigated. 
This approach may provide a more accurate assessment of the 
impact of EHE efforts following changes in levels of aware-
ness when diagnoses-based indicators are more biased. Efforts 
should also be made to improve the timely release of surveil-
lance data to increase its usefulness for regular monitoring of 
EHE progress.

When using changes in total and time-adjusted HIV diagnoses 
to infer early changes in HIV incidence, larger underestimation 

is expected to occur in settings with substantial increases in 
levels of awareness of living with HIV early in EHE efforts. 
This is particularly problematic when assessing and comparing 
progress across heterogeneous counties to guide allocation 
of resources. Counties with existing high levels of awareness 
of living with HIV may see more rapid declines in diagnoses 
compared with those with lower initial levels of awareness who 
rapidly expand their HIV testing, leading to temporary obser-
vations of increases in numbers of diagnoses despite similar 
impacts on incidence. This could potentially result in misallo-
cation of resources, if resources are focused in counties that are 
achieving substantial reductions in new infections but not yet 
seeing a reduction in diagnoses or if successful interventions 
are not deemed to be effective and therefore stopped or not rep-
licated in other locations.

In conclusion, among the surveillance measures considered 
here, surveillance data on new diagnoses adjusted for time since 
infection (estimated from CD4 + cell count) performed poorly 
following rapid changes in levels of awareness of HIV status due 
to expansion of HIV testing programs [18] but could be used to 
evaluate the EHE goals once HIV testing rates have stabilized. 
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reductions in diagnoses with evidence of recent infection, diagnoses adjusted for time since infection, diagnoses adjusted for number of tests performed, or the proportion 
of diagnosed men who are not virally suppressed, and reductions in cumulative infections, across all intervention runs, after 2, 5, or 10 years of a program expanding antire-
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Changes in diagnoses adjusted for testing volume or changes 
in levels of viral suppression perform better than time-adjusted 
diagnoses for estimating short-term changes in numbers of 
infections early in EHE efforts but have limited precision. 
Reducing reporting delays will be important if surveillance data 
are to be used to monitor early progress toward EHE. If fea-
sible, conducting cross-sectional surveys with recency testing 
may provide complementary and more accurate estimates of 
changes in new HIV infections.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, 
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