3,389 research outputs found

    Prevention and management of excessive gestational weight gain: a survey of overweight and obese pregnant women

    Get PDF
    Background - Excessive gestational weight gain is associated with adverse infant, childhood and maternal outcomes and research to develop interventions to address this issue is ongoing. The views of women on gestational weight gain and the resources they would consider helpful in addressing this are however largely unknown. This survey aimed to determine the views of newly pregnant women, living in areas of social disadvantage, on 1) their current body weight and potential gestational weight gain and 2) the resources or interventions they would consider helpful in preventing excessive gestational weight gain. Methods - A convenience sample of overweight and obese pregnant women living in Fife, UK, were invited to complete a short anonymised questionnaire at their 12 week booking visit. Results - 428 women, BMI>25 kg/m2, completed the questionnaire. Fifty-four per cent of respondents were obese (231) and 62% were living in areas of mild to moderate deprivation. Over three-quarters of participants felt dissatisfied with their current weight (81%). The majority of women (60%) expressed some concern about potential weight gain. Thirty-nine percent were unconcerned about weight gain during their pregnancy, including 34 women (19%) who reported having retained weight gained in earlier pregnancies. Amongst those concerned about weight gain advice on physical activity (41%) and access to sports/leisure facilities were favoured resources (36%). Fewer women (12%) felt that group sessions on healthy eating or attending a clinic for individualised advice (14%) would be helpful. "Getting time off work" was the most frequently cited barrier (48%) to uptake of resources other than leaflets. Conclusions- These data suggest a lack of awareness amongst overweight and obese women regarding excessive gestational weight gain. Monitoring of gestational weight gain, and approaches for its management, should be formally integrated into routine antenatal care. Barriers to the uptake of resources to address weight gain are numerous and must be considered in the design of future interventions and services

    Analysis of factors influencing the ultrasonic fetal weight estimation

    Get PDF
    Objective: The aim of our study was the evaluation of sonographic fetal weight estimation taking into consideration 9 of the most important factors of influence on the precision of the estimation. Methods: We analyzed 820 singleton pregnancies from 22 to 42 weeks of gestational age. We evaluated 9 different factors that potentially influence the precision of sonographic weight estimation ( time interval between estimation and delivery, experts vs. less experienced investigator, fetal gender, gestational age, fetal weight, maternal BMI, amniotic fluid index, presentation of the fetus, location of the placenta). Finally, we compared the results of the fetal weight estimation of the fetuses with poor scanning conditions to those presenting good scanning conditions. Results: Of the 9 evaluated factors that may influence accuracy of fetal weight estimation, only a short interval between sonographic weight estimation and delivery (0-7 vs. 8-14 days) had a statistically significant impact. Conclusion: Of all known factors of influence, only a time interval of more than 7 days between estimation and delivery had a negative impact on the estimation

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    Lookahead policy and genetic algorithm for solving nurse rostering problems

    Get PDF
    Previous research has shown that value function approximation in dynamic programming does not perform too well when tackling difficult combinatorial optimisation problem such as multi-stage nurse rostering. This is because the large action space that need to be explored. This paper proposes to replace the value function approximation by a genetic algorithm in order to generate solutions to the stages before applying the lookahead policy to evaluate the future effect of decisions made in previous stages. Then, the paper proposes a hybrid approach that generates sets of weekly rosters through a genetic algorithm for consideration by the lookahead procedure that assembles a solution for the whole planning horizon of several weeks. Results indicate that this hybrid between an evolutionary algorithm and the lookahead policy mechanism from dynamic programming performs more competitive than the value function approximation dynamic programming investigated before. Results also show that the proposed algorithm is ranked well in respect of several other algorithms applied to the same set of problem instances. The intended contribution of this paper is towards a better understanding of how to successfully apply dynamic programming mechanisms to tackle difficult combinatorial optimisation problems

    Designing high-quality implementation research: development, application, feasibility and preliminary evaluation of the implementation science research development (ImpRes) tool and guide

    Get PDF
    Background:  Designing implementation research can be a complex and daunting task, especially for applied health researchers who have not received specialist training in implementation science. We developed the Implementation Science Research Development (ImpRes) tool and supplementary guide to address this challenge and provide researchers with a systematic approach to designing implementation research. Methods:  A multi-method and multi-stage approach was employed. An international, multidisciplinary expert panel engaged in an iterative brainstorming and consensus-building process to generate core domains of the ImpRes tool, representing core implementation science principles and concepts that researchers should consider when designing implementation research. Simultaneously, an iterative process of reviewing the literature and expert input informed the development and content of the tool. Once consensus had been reached, specialist expert input was sought on involving and engaging patients/service users; and economic evaluation. ImpRes was then applied to 15 implementation and improvement science projects across the National Institute of Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) South London, a research organisation in London, UK. Researchers who applied the ImpRes tool completed an 11-item questionnaire evaluating its structure, content and usefulness. Results:  Consensus was reached on ten implementation science domains to be considered when designing implementation research. These include implementation theories, frameworks and models, determinants of implementation, implementation strategies, implementation outcomes and unintended consequences. Researchers who used the ImpRes tool found it useful for identifying project areas where implementation science is lacking (median 5/5, IQR 4–5) and for improving the quality of implementation research (median 4/5, IQR 4–5) and agreed that it contained the key components that should be considered when designing implementation research (median 4/5, IQR 4–4). Qualitative feedback from researchers who applied the ImpRes tool indicated that a supplementary guide was needed to facilitate use of the tool. Conclusions:  We have developed a feasible and acceptable tool, and supplementary guide, to facilitate consideration and incorporation of core principles and concepts of implementation science in applied health implementation research. Future research is needed to establish whether application of the tool and guide has an effect on the quality of implementation research

    Zeolite-like liquid crystals

    Get PDF
    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension

    The acceptance of the clinical photographic posture assessment tool (CPPAT)

    Get PDF
    Abstract Background There is a lack of evidence-based quantitative clinical methods to adequately assess posture. Our team developed a clinical photographic posture assessment tool (CPPAT) and implemented this tool in clinical practice to standardize posture assessment. The objectives were to determine the level of acceptance of the CPPAT and to document predictors as well as facilitators of and barriers to the acceptance of this tool by clinicians doing posture re-education. Methods This is a prospective study focussing on technology acceptance. Thirty-two clinician participants (physical therapists and sport therapists) received a 3–5 h training workshop explaining how to use the CPPAT. Over a three-month trial, they recorded time-on-task for a complete posture evaluation (photo - and photo-processing). Subsequently, participants rated their acceptance of the tool and commented on facilitators and barriers of the clinical method. Results Twenty-three clinician participants completed the trial. They took 22 (mean) ± 10 min (SD) for photo acquisition and 36 min ± 19 min for photo-processing. Acceptance of the CPPAT was high. Perceived ease of use was an indirect predictor of intention to use, mediated by perceived usefulness. Analysis time was an indirect predictor, mediated by perceived usefulness, and a marginally significant direct predictor. Principal facilitators were objective measurements, visualization, utility, and ease of use. Barriers were time to do a complete analysis of posture, quality of human-computer interaction, non-automation of posture index calculation and photo transfer, and lack of versatility. Conclusion The CPPAT is perceived as useful and easy to use by clinicians and may facilitate the quantitative analysis of posture. Adapting the user-interface and functionality to quantify posture may facilitate a wider adoption of the tool

    Dystrophic heart failure blocked by membrane sealant poloxamer

    Full text link
    Dystrophin deficiency causes Duchenne muscular dystrophy (DMD) in humans, an inherited and progressive disease of striated muscle deterioration that frequently involves pronounced cardiomyopathy(1). Heart failure is the second leading cause of fatalities in DMD1,2. Progress towards defining the molecular basis of disease in DMD has mostly come from studies on skeletal muscle, with comparatively little attention directed to cardiac muscle. The pathophysiological mechanisms involved in cardiac myocytes may differ significantly from skeletal myofibres; this is underscored by the presence of significant cardiac disease in patients with truncated or reduced levels of dystrophin but without skeletal muscle disease(3). Here we show that intact, isolated dystrophin-deficient cardiac myocytes have reduced compliance and increased susceptibility to stretch-mediated calcium overload, leading to cell contracture and death, and that application of the membrane sealant poloxamer 188 corrects these defects in vitro. In vivo administration of poloxamer 188 to dystrophic mice instantly improved ventricular geometry and blocked the development of acute cardiac failure during a dobutamine-mediated stress protocol. Once issues relating to optimal dosing and long-term effects of poloxamer 188 in humans have been resolved, chemical-based membrane sealants could represent a new therapeutic approach for preventing or reversing the progression of cardiomyopathy and heart failure in muscular dystrophy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62706/1/nature03844.pd
    • …
    corecore