88 research outputs found

    Time-dependent failure in load-bearing polymers: a potential hazard in structural applications of polylactides

    Get PDF
    With their excellent biocompatibility and relatively high mechanical strength, polylactides are attractive candidates for application in load-bearing, resorbable implants. Pre-clinical studies provided a proof of principle for polylactide cages as temporary constructs to facilitate spinal fusion, and several cages already made it to the market. However, also failures have been reported: clinical studies reported considerable amounts of subsidence with lumbar spinal fusion cages, and in an in vivo goat study, polylactide spinal cages failed after only three months of implantation, although mechanical testing had predicted sufficient strength for at least eight months. The failures appear to be related to the long-term performance of polylactides under static loading conditions, a phenomenon which is common to all glassy polymers and finds its origin in stress-activated molecular mobility leading to plastic flow. This paper reviews the mechanical properties and deformation kinetics of amorphous polylactides. Compression tests were performed with various strain rates, and static stress experiments were done to determine time-to failure. Pure PLLA appeared to have a higher yield strength than its co-polymers with d-lactide, but the kinetic behaviour of the polymers was the same: an excellent short-term strength at higher loading rates, but lifetime under static stress is rather poor. As spinal implants need to maintain mechanical integrity for a period of at least six months, this has serious implications for the clinical application of amorphous polylactides in load bearing situations. It is recommended that standards for mechanical testing of implants made of polymers be revised in order to consider this typical time-dependent behaviour

    SRA-Domain Proteins Required for DRM2-Mediated De Novo DNA Methylation

    Get PDF
    De novo DNA methylation and the maintenance of DNA methylation in asymmetrical sequence contexts is catalyzed by homologous proteins in plants (DRM2) and animals (DNMT3a/b). In plants, targeting of DRM2 depends on small interfering RNAs (siRNAs), although the molecular details are still unclear. Here, we show that two SRA-domain proteins (SUVH9 and SUVH2) are also essential for DRM2-mediated de novo and maintenance DNA methylation in Arabidopsis thaliana. At some loci, SUVH9 and SUVH2 act redundantly, while at other loci only SUVH2 is required, and this locus specificity correlates with the differing DNA-binding affinity of the SRA domains within SUVH9 and SUVH2. Specifically, SUVH9 preferentially binds methylated asymmetric sites, while SUVH2 preferentially binds methylated CG sites. The suvh9 and suvh2 mutations do not eliminate siRNAs, suggesting a role for SUVH9 and SUVH2 late in the RNA-directed DNA methylation pathway. With these new results, it is clear that SRA-domain proteins are involved in each of the three pathways leading to DNA methylation in Arabidopsis

    Activation of Hif1α by the Prolylhydroxylase Inhibitor Dimethyoxalyglycine Decreases Radiosensitivity

    Get PDF
    Hypoxia inducible factor 1α (Hif1α) is a stress responsive transcription factor, which regulates the expression of genes required for adaption to hypoxia. Hif1α is normally hydroxylated by an oxygen-dependent prolylhydroxylase, leading to degradation and clearance of Hif1α from the cell. Under hypoxic conditions, the activity of the prolylhydroxylase is reduced and Hif1α accumulates. Hif1α is also constitutively expressed in tumor cells, where it is associated with resistance to ionizing radiation. Activation of the Hif1α transcriptional regulatory pathway may therefore function to protect normal cells from DNA damage caused by ionizing radiation. Here, we utilized the prolylhydroxylase inhibitor dimethyloxalylglycine (DMOG) to elevate Hif1α levels in mouse embryonic fibroblasts (MEFs) to determine if DMOG could function as a radioprotector. The results demonstrate that DMOG increased Hif1α protein levels and decreased the sensitivity of MEFs to ionizing radiation. Further, the ability of DMOG to function as a radioprotector required Hif1α, indicating a key role for Hif1α's transcriptional activity. DMOG also induced the Hif1α -dependent accumulation of several DNA damage response proteins, including CHD4 and MTA3 (sub-units of the NuRD deacetylase complex) and the Suv39h1 histone H3 methyltransferase. Depletion of Suv39h1, but not CHD4 or MTA3, reduced the ability of DMOG to protect cells from radiation damage, implicating increased histone H3 methylation in the radioprotection of cells. Finally, treatment of mice with DMOG prior to total body irradiation resulted in significant radioprotection of the mice, demonstrating the utility of DMOG and related prolylhydroxylase inhibitors to protect whole organisms from ionizing radiation. Activation of Hif1α through prolylhydroxylase inhibition therefore identifies a new pathway for the development of novel radiation protectors

    The Onconeural Antigen cdr2 Is a Novel APC/C Target that Acts in Mitosis to Regulate C-Myc Target Genes in Mammalian Tumor Cells

    Get PDF
    Cdr2 is a tumor antigen expressed in a high percentage of breast and ovarian tumors and is the target of a naturally occurring tumor immune response in patients with paraneoplastic cerebellar degeneration, but little is known of its regulation or function in cancer cells. Here we find that cdr2 is cell cycle regulated in tumor cells with protein levels peaking in mitosis. As cells exit mitosis, cdr2 is ubiquitinated by the anaphase promoting complex/cyclosome (APC/C) and rapidly degraded by the proteasome. Previously we showed that cdr2 binds to the oncogene c-myc, and here we extend this observation to show that cdr2 and c-myc interact to synergistically regulate c-myc-dependent transcription during passage through mitosis. Loss of cdr2 leads to functional consequences for dividing cells, as they show aberrant mitotic spindle formation and impaired proliferation. Conversely, cdr2 overexpression is able to drive cell proliferation in tumors. Together, these data indicate that the onconeural antigen cdr2 acts during mitosis in cycling cells, at least in part through interactions with c-myc, to regulate a cascade of actions that may present new targeting opportunities in gynecologic cancer

    A randomised controlled feasibility trial for an educational school-based mental health intervention: study protocol

    Get PDF
    Background: With the burden of mental illness estimated to be costing the English economy alone around £22.5 billion a year [1], coupled with growing evidence that many mental disorders have their origins in adolescence, there is increasing pressure for schools to address the emotional well-being of their students, alongside the stigma and discrimination of mental illness. A number of prior educational interventions have been developed and evaluated for this purpose, but inconsistency of findings, reporting standards, and methodologies have led the majority of reviewers to conclude that the evidence for the efficacy of these programmes remains inconclusive. Methods/Design: A cluster randomised controlled trial design has been employed to enable a feasibility study of 'SchoolSpace', an intervention in 7 UK secondary schools addressing stigma of mental illness, mental health literacy, and promotion of mental health. A central aspect of the intervention involves students in the experimental condition interacting with a young person with lived experience of mental illness, a stigma reducing technique designed to facilitate students' engagement in the project. The primary outcome is the level of stigma related to mental illness. Secondary outcomes include mental health literacy, resilience to mental illness, and emotional well-being. Outcomes will be measured pre and post intervention, as well as at 6 month follow-up. Discussion: The proposed intervention presents the potential for increased engagement due to its combination of education and contact with a young person with lived experience of mental illness. Contact as a technique to reduce discrimination has been evaluated previously in research with adults, but has been employed in only a minority of research trials investigating the impact on youth. Prior to this study, the effect of contact on mental health literacy, resilience, and emotional well-being has not been evaluated to the authors' knowledge. If efficacious the intervention could provide a reliable and cost-effective method to reduce stigma in young people, whilst increasing mental health literacy, and emotional well-being. Trial registration: ISRCTN: ISRCTN0740602

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    Neurobiology of social behavior abnormalities in autism and Williams syndrome

    Get PDF
    Social behavior is a basic behavior mediated by multiple brain regions and neural circuits, and is crucial for the survival and development of animals and humans. Two neuropsychiatric disorders that have prominent social behavior abnormalities are autism spectrum disorders (ASD), which is characterized mainly by hyposociability, and Williams syndrome (WS), whose subjects exhibit hypersociability. Here we review the unique properties of social behavior in ASD and WS, and discuss the major theories in social behavior in the context of these disorders. We conclude with a discussion of the research questions needing further exploration to enhance our understanding of social behavior abnormalities

    The Oldest Case of Decapitation in the New World (Lapa do Santo, East-Central Brazil)

    Get PDF
    We present here evidence for an early Holocene case of decapitation in the New World (Burial 26), found in the rock shelter of Lapa do Santo in 2007. Lapa do Santo is an archaeological site located in the Lagoa Santa karst in east-central Brazil with evidence of human occupation dating as far back as 11.7-12.7 cal kyBP (95.4% interval). An ultra-filtered AMS age determination on a fragment of the sphenoid provided an age range of 9.1-9.4 cal kyBP (95.4% interval) for Burial 26. The interment was composed of an articulated cranium, mandible and first six cervical vertebrae. Cut marks with a v-shaped profile were observed in the mandible and sixth cervical vertebra. The right hand was amputated and laid over the left side of the face with distal phalanges pointing to the chin and the left hand was amputated and laid over the right side of the face with distal phalanges pointing to the forehead. Strontium analysis comparing Burial 26's isotopic signature to other specimens from Lapa do Santo suggests this was a local member of the group. Therefore, we suggest a ritualized decapitation instead of trophy-taking, testifying for the sophistication of mortuary rituals among hunter-gatherers in the Americas during the early Archaic period. In the apparent absence of wealth goods or elaborated architecture, Lapa do Santo's inhabitants seemed to use the human body to express their cosmological principles regarding death

    The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors.

    Get PDF
    The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate
    corecore