811 research outputs found

    First identification of porcine parvovirus 6 in Poland

    Get PDF
    Porcine parvovirus type 1 is a major causative agent of swine reproductive failure. During the past decade, several new parvoviruses have been discovered in pigs. Porcine parvovirus type 6 (PPV6), recently identified, has been reported in pigs in China and in the USA while the PPV6 status in the European pig population remains undetermined. In the present study, PPV6 DNA was identified in serum samples collected from domestic pigs in Poland. In investigated herds, the prevalence of PPV6 was 14.9 % (15/101 samples). Sequencing was conducted, and 11 nearly complete PPV6 genomes were obtained. Phylogenetic analysis indicated that PPV6 sequences cluster into four distinct groups, and the Polish PPV6 strains from three individual farms were present in three of these four groups. In addition, the Polish PPV6 strain P15-1 was identified as a putative recombination of an ORF1 from US stains and an ORF2 from Chinese strains. This is the first identification of PPV6 in Europe, and this finding will encourage future epidemiological studies on parvoviruses in European pigs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11262-016-1386-y) contains supplementary material, which is available to authorized users

    Paternity analysis of pollen-mediated gene flow for Fraxinus excelsior L. in a chronically fragmented landscape

    Get PDF
    Paternity analysis based on microsatellite marker genotyping was used to infer contemporary genetic connectivity by pollen of three population remnants of the wind-pollinated, wind-dispersed tree Fraxinus excelsior, in a deforested Scottish landscape. By deterministically accounting for genotyping error and comparing a range of assignment methods, individual-based paternity assignments were used to derive population-level estimates of gene flow. Pollen immigration into a 300ha landscape represents between 43% and 68% of effective pollination, mostly depending on assignment method. Individual male reproductive success is unequal, with 31 of 48 trees fertilising one seed or more, but only three trees fertilising more than ten seeds. Spatial analysis suggests a fat-tailed pollen dispersal curve with 85% of detected pollination occurring within 100m, and 15% spreading between 300m and 1900m from the source. Identification of immigrating pollen sourced from two neighbouring remnants indicates further effective dispersal at 2900m. Pollen exchange among remnants is driven by population size rather than geographic distance, with larger remnants acting predominantly as pollen donors, and smaller remnants as pollen recipients. Enhanced wind dispersal of pollen in a barren landscape ensures that the seed produced within the catchment includes genetic material from a wide geographic area. However, gene flow estimates based on analysis of non-dispersed seeds were shown to underestimate realised gene immigration into the remnants by a factor of two suggesting that predictive landscape conservation requires integrated estimates of post-recruitment gene flow occurring via both pollen and seed

    Measurement of the top quark mass using the matrix element technique in dilepton final states

    Get PDF
    We present a measurement of the top quark mass in pp¯ collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7  fb−1. The matrix element technique is applied to tt¯ events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt¯ decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt=173.93±1.84  GeV

    Learning a Prior on Regulatory Potential from eQTL Data

    Get PDF
    Genome-wide RNA expression data provide a detailed view of an organism's biological state; hence, a dataset measuring expression variation between genetically diverse individuals (eQTL data) may provide important insights into the genetics of complex traits. However, with data from a relatively small number of individuals, it is difficult to distinguish true causal polymorphisms from the large number of possibilities. The problem is particularly challenging in populations with significant linkage disequilibrium, where traits are often linked to large chromosomal regions containing many genes. Here, we present a novel method, Lirnet, that automatically learns a regulatory potential for each sequence polymorphism, estimating how likely it is to have a significant effect on gene expression. This regulatory potential is defined in terms of “regulatory features”—including the function of the gene and the conservation, type, and position of genetic polymorphisms—that are available for any organism. The extent to which the different features influence the regulatory potential is learned automatically, making Lirnet readily applicable to different datasets, organisms, and feature sets. We apply Lirnet both to the human HapMap eQTL dataset and to a yeast eQTL dataset and provide statistical and biological results demonstrating that Lirnet produces significantly better regulatory programs than other recent approaches. We demonstrate in the yeast data that Lirnet can correctly suggest a specific causal sequence variation within a large, linked chromosomal region. In one example, Lirnet uncovered a novel, experimentally validated connection between Puf3—a sequence-specific RNA binding protein—and P-bodies—cytoplasmic structures that regulate translation and RNA stability—as well as the particular causative polymorphism, a SNP in Mkt1, that induces the variation in the pathway

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+K+μ+μB^+ \to K^+\mu^+\mu^-, B0K(892)0μ+μB^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0ϕ(1020)μ+μB^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+K+μ+μB^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0K0μ+μB^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0ϕμ+μdecayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let
    corecore