122 research outputs found

    Measurement of the top quark mass using the matrix element technique in dilepton final states

    Get PDF
    We present a measurement of the top quark mass in pp¯ collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7  fb−1. The matrix element technique is applied to tt¯ events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt¯ decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt=173.93±1.84  GeV

    Decreased olfactory discrimination is associated with impulsivity in healthy volunteers

    Get PDF
    In clinical populations, olfactory abilities parallel executive function, implicating shared neuroanatomical substrates within the ventral prefrontal cortex. In healthy individuals, the relationship between olfaction and personality traits or certain cognitive and behavioural characteristics remains unexplored. We therefore tested if olfactory function is associated with trait and behavioural impulsivity in nonclinical individuals. Eighty-three healthy volunteers (50 females) underwent quantitative assessment of olfactory function (odour detection threshold, discrimination, and identifcation). Each participant was rated for trait impulsivity index using the Barratt Impulsiveness Scale and performed a battery of tasks to assess behavioural impulsivity (Stop Signal Task, SST; Information Sampling Task, IST; Delay Discounting). Lower odour discrimination predicted high ratings in non-planning impulsivity (Barratt Non-Planning impulsivity subscale); both, lower odour discrimination and detection threshold predicted low inhibitory control (SST; increased motor impulsivity). These fndings extend clinical observations to support the hypothesis that defcits in olfactory ability are linked to impulsive tendencies within the healthy population. In particular, the relationship between olfactory abilities and behavioural inhibitory control (in the SST) reinforces evidence for functional overlap between neural networks involved in both processes. These fndings may usefully inform the stratifcation of people at risk of impulse-control-related problems and support planning early clinical interventions

    Measurement of spin correlation between top and antitop quarks produced in pp- collisions at √s = 1.96 TeV

    Get PDF
    We present a measurement of the correlation between the spins of t and t- quarks produced in proton-antiproton collisions at the Tevatron Collider at a center-of-mass energy of 1.96 TeV. We apply a matrix element technique to dilepton and single-lepton+jets final states in data accumulated with the D0 detector that correspond to an integrated luminosity of 9.7 fb-1. The measured value of the correlation coefficient in the off-diagonal basis, Ooff=0.89±0.22(stat+syst), is in agreement with the standard model prediction, and represents evidence for a top-antitop quark spin correlation difference from zero at a level of 4.2 standard deviations

    Nuclear Calcium Signaling Controls Expression of a Large Gene Pool: Identification of a Gene Program for Acquired Neuroprotection Induced by Synaptic Activity

    Get PDF
    Synaptic activity can boost neuroprotection through a mechanism that requires synapse-to-nucleus communication and calcium signals in the cell nucleus. Here we show that in hippocampal neurons nuclear calcium is one of the most potent signals in neuronal gene expression. The induction or repression of 185 neuronal activity-regulated genes is dependent upon nuclear calcium signaling. The nuclear calcium-regulated gene pool contains a genomic program that mediates synaptic activity-induced, acquired neuroprotection. The core set of neuroprotective genes consists of 9 principal components, termed Activity-regulated Inhibitor of Death (AID) genes, and includes Atf3, Btg2, GADD45β, GADD45γ, Inhibin β-A, Interferon activated gene 202B, Npas4, Nr4a1, and Serpinb2, which strongly promote survival of cultured hippocampal neurons. Several AID genes provide neuroprotection through a common process that renders mitochondria more resistant to cellular stress and toxic insults. Stereotaxic delivery of AID gene-expressing recombinant adeno-associated viruses to the hippocampus confers protection in vivo against seizure-induced brain damage. Thus, treatments that enhance nuclear calcium signaling or supplement AID genes represent novel therapies to combat neurodegenerative conditions and neuronal cell loss caused by synaptic dysfunction, which may be accompanied by a deregulation of calcium signal initiation and/or propagation to the cell nucleus

    Inclusive Production of the X(4140) State in pp¯ Collisions at D0

    Get PDF

    From sea monsters to charismatic megafauna: changes in perception and use of large marine animals

    Get PDF
    Marine megafauna has always elicited contrasting feelings. In the past, large marine animals were often depicted as fantastic mythological creatures and dangerous monsters, while also arousing human curiosity. Marine megafauna has been a valuable resource to exploit, leading to the collapse of populations and local extinctions. In addition, some species have been perceived as competitors of fishers for marine resources and were often actively culled. Since the 1970s, there has been a change in the perception and use of megafauna. The growth of marine tourism, increasingly oriented towards the observation of wildlife, has driven a shift from extractive to non-extractive use, supporting the conservation of at least some species of marine megafauna. In this paper, we review and compare the changes in the perception and use of three megafaunal groups, cetaceans, elasmobranchs and groupers, with a special focus on European cultures. We highlight the main drivers and the timing of these changes, compare different taxonomic groups and species, and highlight the implications for management and conservation. One of the main drivers of the shift in perception, shared by all the three groups of megafauna, has been a general increase in curiosity towards wildlife, stimulated inter alia by documentaries (from the early 1970s onwards), and also promoted by easy access to scuba diving. At the same time, environmental campaigns have been developed to raise public awareness regarding marine wildlife, especially cetaceans, a process greatly facilitated by the rise of Internet and the World Wide Web. Currently, all the three groups (cetaceans, elasmobranchs and groupers) may represent valuable resources for ecotourism. Strikingly, the economic value of live specimens may exceed their value for human consumption. A further change in perception involving all the three groups is related to a growing understanding and appreciation of their key ecological role. The shift from extractive to non-extractive use has the potential for promoting species conservation and local economic growth. However, the change in use may not benefit the original stakeholders (e.g. fishers or whalers) and there may therefore be a case for providing compensation for disadvantaged stakeholders. Moreover, it is increasingly clear that even non-extractive use may have a negative impact on marine megafauna, therefore regulations are needed.SFRH/BPD/102494/2014, UID/MAR/04292/2019, IS1403info:eu-repo/semantics/publishedVersio

    Consensus Paper: Cerebellum and Social Cognition.

    Get PDF
    The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions

    Studies of X(3872) and ψ(2S) production in p\bar{p}over-bar collisions at 1.96 TeV

    Get PDF
    We present various properties of the production of the X (3872) and ψ(2S) states based on 10.4fb‾¹ collected by the D0 experiment in Tevatron p\bar{p} collisions at \sqrt{s} = 1.96 TeV. For both states, we measure the nonprompt fraction fNP of the inclusive production rate due to decays of b-flavored hadrons. We find the fNP values systematically below those obtained at the LHC. The fNP fraction for ψ(2S) increases with transverse momentum, whereas for the X(3872) it is constant within large uncertainties, in agreement with the LHC results. The ratio of prompt to nonprompt ψ(2S) production, (1 - fNP)/fNP, decreases only slightly going from the Tevatron to the LHC, but for the X(3872), this ratio decreases by a factor of about 3. We test the soft-pion signature of the X(3872) modeled as a weakly bound charm-meson pair by studying the production of the X(3872) as a function of the kinetic energy of the X(3872) and the pion in the X(3872) π center-of-mass frame. For a subsample consistent with prompt production, the results are incompatible with a strong enhancement in the production of the X(3872) at the small kinetic energy of the X(3872) and the π in the X(3872)π center-of-mass frame expected for the X + soft-pion production mechanism. For events consistent with being due to decays of hadrons, there is no significant evidence for the soft-pion effect, but its presence at the level expected for the binding energy of 0.17 MeV and the momentum scale Λ = M(π) is not ruled out

    Properties of Z±c(3900) produced in pp¯ collisions

    Get PDF
    We study the production of the exotic charged charmoniumlike state Z ± c ( 3900 ) in p ¯ p collisions through the sequential process ψ ( 4260 ) → Z ± c ( 3900 ) π ∓ , Z ± c ( 3900 ) → J / ψ π ± . Using the subsample of candidates originating from semi-inclusive weak decays of b -flavored hadrons, we measure the invariant mass and natural width to be M = 3902.6 + 5.2 − 5.0 ( stat ) + 3.3 − 1.4 ( syst )     MeV and Γ = 3 2 + 28 − 21 ( stat ) + 26 − 7 ( syst )     MeV , respectively. We search for prompt production of the Z ± c ( 3900 ) through the same sequential process. No significant signal is observed, and we set an upper limit of 0.70 at the 95% credibility level on the ratio of prompt production to the production via b -hadron decays. The study is based on 10.4     f b − 1 of p ¯ p collision data collected by the D0 experiment at the Fermilab Tevatron collider

    Combined Tevatron upper limit on gg->H->W+W- and constraints on the Higgs boson mass in fourth-generation fermion models

    Get PDF
    Report number: FERMILAB-PUB-10-125-EWe combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg→H→W+W- in pp̅ collisions at the Fermilab Tevatron Collider at √s=1.96  TeV. With 4.8  fb-1 of integrated luminosity analyzed at CDF and 5.4  fb-1 at D0, the 95% confidence level upper limit on σ(gg→H)×B(H→W+W-) is 1.75 pb at mH=120  GeV, 0.38 pb at mH=165  GeV, and 0.83 pb at mH=200  GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.Peer reviewe
    corecore