199 research outputs found

    The LatMix summer campaign : submesoscale stirring in the upper ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 96 (2015): 1257–1279, doi:10.1175/BAMS-D-14-00015.1.Lateral stirring is a basic oceanographic phenomenon affecting the distribution of physical, chemical, and biological fields. Eddy stirring at scales on the order of 100 km (the mesoscale) is fairly well understood and explicitly represented in modern eddy-resolving numerical models of global ocean circulation. The same cannot be said for smaller-scale stirring processes. Here, the authors describe a major oceanographic field experiment aimed at observing and understanding the processes responsible for stirring at scales of 0.1–10 km. Stirring processes of varying intensity were studied in the Sargasso Sea eddy field approximately 250 km southeast of Cape Hatteras. Lateral variability of water-mass properties, the distribution of microscale turbulence, and the evolution of several patches of inert dye were studied with an array of shipboard, autonomous, and airborne instruments. Observations were made at two sites, characterized by weak and moderate background mesoscale straining, to contrast different regimes of lateral stirring. Analyses to date suggest that, in both cases, the lateral dispersion of natural and deliberately released tracers was O(1) m2 s–1 as found elsewhere, which is faster than might be expected from traditional shear dispersion by persistent mesoscale flow and linear internal waves. These findings point to the possible importance of kilometer-scale stirring by submesoscale eddies and nonlinear internal-wave processes or the need to modify the traditional shear-dispersion paradigm to include higher-order effects. A unique aspect of the Scalable Lateral Mixing and Coherent Turbulence (LatMix) field experiment is the combination of direct measurements of dye dispersion with the concurrent multiscale hydrographic and turbulence observations, enabling evaluation of the underlying mechanisms responsible for the observed dispersion at a new level.The bulk of this work was funded under the Scalable Lateral Mixing and Coherent Turbulence Departmental Research Initiative and the Physical Oceanography Program. The dye experiments were supported jointly by the Office of Naval Research and the National Science Foundation Physical Oceanography Program (Grants OCE-0751653 and OCE-0751734).2016-02-0

    Volume 05

    Get PDF
    Introduction from Dean Dr. Charles Ross The Tallis House as an Extension of Emily Tallis in McEwan\u27s Atonement by Ian Karamarkovich Graphic Design by Jessica Cox Graphic Design by Kyle Fowlkes Graphic Design by Allison Pawlowski Incorporating Original Research in The Classroom: A Case Study Analyzing the Influence of the Chesapeake Bay on Local Temperatures by Kaitlin Major, Carrie Dunham and Dr. Kelsey Scheitlin Graphic Design by Kathryn Grayson Graphic Design by Ashley Johnson Facing the Music: Environmental Impact Assessment of Building A Concert Hall on North Campus by Jennifer Nehrt, Kelsey Stolzenbach And Dr. Kelsey Scheitlin Art by Kristin McQuarrie Art by Sara Nelson Art by Melisa Michelle Prosocial Behavior as a Result of Prosocial Music by Jessica Sudlow Graphic Design by Perry Bason Graphic Design by Danielle Dmuchawski Graphic Design by Mariah Asbell Graphic Design by Matthew Sakach Identifying Pathogenic Salmonella Serotypes Isolated from Prince Edward County, VA Waterways via Mutiplex PCR Analysis by Timothy Smith, Jr. Art by Annaliese Troxell Art by T. Dane Summerell Development of Salicylidene Anilines for Application in the High School Laboratory by Sarah Ganrude Graphic Design by Malina Rutherford Graphic Design by Hannah Hopper, and Matthew Sakach Because That\u27s What Daddies Do: Effects of Fathering Patterns on Son\u27s Self and Gender Identities by John Berry, Jr. Graphic Design by James Early Graphic Design by Colleen Festa The Influence of Tropical Cyclones on Chesapeake Bay Dead Zones by Chelsea D. Taylor and Dr. Kelsey Scheitlin Graphic Design by Michelle Maddox Graphic Design by Kaitlyn Smith Graphic Design by Sarah Schu Graphic Design by Perry Bason, Cabell Edmunds, Katherine Grayson, Matthew Sakach, and Kayla Torna

    Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer

    Get PDF
    INTRODUCTION: Tamoxifen therapy reduces the risk of recurrence and prolongs the survival of oestrogen-receptor-positive patients with breast cancer. Even if most patients benefit from tamoxifen, many breast tumours either fail to respond or become resistant. Because tamoxifen is extensively metabolised by polymorphic enzymes, one proposed mechanism underlying the resistance is altered metabolism. In the present study we investigated the prognostic and/or predictive value of functional polymorphisms in cytochrome P450 3A5 CYP3A5 (*3), CYP2D6 (*4), sulphotransferase 1A1 (SULT1A1; *2) and UDP-glucuronosyltransferase 2B15 (UGT2B15; *2) in tamoxifen-treated patients with breast cancer. METHODS: In all, 677 tamoxifen-treated postmenopausal patients with breast cancer, of whom 238 were randomised to either 2 or 5 years of tamoxifen, were genotyped by using PCR with restriction fragment length polymorphism or PCR with denaturing high-performance liquid chromatography. RESULTS: The prognostic evaluation performed in the total population revealed a significantly better disease-free survival in patients homozygous for CYP2D6*4. For CYP3A5, SULT1A1 and UGT2B15 no prognostic significance was observed. In the randomised group we found that for CYP3A5, homozygous carriers of the *3 allele tended to have an increased risk of recurrence when treated for 2 years with tamoxifen, although this was not statistically significant (hazard ratio (HR) = 2.84, 95% confidence interval (CI) = 0.68 to 11.99, P = 0.15). In the group randomised to 5 years' tamoxifen the survival pattern shifted towards a significantly improved recurrence-free survival (RFS) among CYP3A5*3-homozygous patients (HR = 0.20, 95% CI = 0.07 to 0.55, P = 0.002). No reliable differences could be seen between treatment duration and the genotypes of CYP2D6, SULT1A1 or UGT2B15. The significantly improved RFS with prolonged tamoxifen treatment in CYP3A5*3 homozygotes was also seen in a multivariate Cox model (HR = 0.13, CI = 0.02 to 0.86, P = 0.03), whereas no differences could be seen for CYP2D6, SULT1A1 and UGT2B15. CONCLUSION: The metabolism of tamoxifen is complex and the mechanisms responsible for the resistance are unlikely to be explained by a single polymorphism; instead it is a combination of several mechanisms. However, the present data suggest that genetic variation in CYP3A5 may predict response to tamoxifen therapy

    Cell-type specific RNA-Seq reveals novel roles and regulatory programs for terminally differentiated Dictyostelium cells

    Get PDF
    Abstract Background A major hallmark of multicellular evolution is increasing complexity by the evolution of new specialized cell types. During Dictyostelid evolution novel specialization occurred within taxon group 4. We here aim to retrace the nature and ancestry of the novel “cup” cells by comparing their transcriptome to that of other cell types. Results RNA-Seq was performed on purified mature spore, stalk and cup cells and on vegetative amoebas. Clustering and phylogenetic analyses showed that cup cells were most similar to stalk cells, suggesting that they share a common ancestor. The affinity between cup and stalk cells was also evident from promoter-reporter studies of newly identified cell-type genes, which revealed late expression in cups of many stalk genes. However, GO enrichment analysis reveal the unexpected prominence of GTPase mediated signalling in cup cells, in contrast to enrichment of autophagy and cell wall synthesis related transcripts in stalk cells. Combining the cell type RNA-Seq data with developmental expression profiles revealed complex expression dynamics in each cell type as well as genes exclusively expressed during terminal differentiation. Most notable were nine related hssA-like genes that were highly and exclusively expressed in cup cells. Conclusions This study reveals the unique transcriptomes of the mature cup, stalk and spore cells of D. discoideum and provides insight into the ancestry of cup cells and roles in signalling that were not previously realized. The data presented in this study will serve as an important resource for future studies into the regulation and evolution of cell type specialization

    DOMINO-AD protocol: donepezil and memantine in moderate to severe Alzheimer's disease - a multicentre RCT.

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is the commonest cause of dementia. Cholinesterase inhibitors, such as donepezil, are the drug class with the best evidence of efficacy, licensed for mild to moderate AD, while the glutamate antagonist memantine has been widely prescribed, often in the later stages of AD. Memantine is licensed for moderate to severe dementia in AD but is not recommended by the England and Wales National Institute for Health and Clinical Excellence. However, there is little evidence to guide clinicians as to what to prescribe as AD advances; in particular, what to do as the condition progresses from moderate to severe. Options include continuing cholinesterase inhibitors irrespective of decline, adding memantine to cholinesterase inhibitors, or prescribing memantine instead of cholinesterase inhibitors. The aim of this trial is to establish the most effective drug option for people with AD who are progressing from moderate to severe dementia despite treatment with donepezil. METHOD: DOMINO-AD is a pragmatic, 15 centre, double-blind, randomized, placebo controlled trial. Patients with AD, currently living at home, receiving donepezil 10 mg daily, and with Standardized Mini-Mental State Examination (SMMSE) scores between 5 and 13 are being recruited. Each is randomized to one of four treatment options: continuation of donepezil with memantine placebo added; switch to memantine with donepezil placebo added; donepezil and memantine together; or donepezil placebo with memantine placebo. 800 participants are being recruited and treatment continues for one year. Primary outcome measures are cognition (SMMSE) and activities of daily living (Bristol Activities of Daily Living Scale). Secondary outcomes are non-cognitive dementia symptoms (Neuropsychiatric Inventory), health related quality of life (EQ-5D and DEMQOL-proxy), carer burden (General Health Questionnaire-12), cost effectiveness (using Client Service Receipt Inventory) and institutionalization. These outcomes are assessed at baseline, 6, 18, 30 and 52 weeks. All participants will be subsequently followed for 3 years by telephone interview to record institutionalization. DISCUSSION: There is considerable debate about the clinical and cost effectiveness of anti-dementia drugs. DOMINO-AD seeks to provide clear evidence on the best treatment strategies for those managing patients at a particularly important clinical transition point. TRIAL REGISTRATION: Current controlled trials ISRCTN49545035.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    The utility and predictive value of combinations of low penetrance genes for screening and risk prediction of colorectal cancer

    Get PDF
    Despite the fact that colorectal cancer (CRC) is a highly treatable form of cancer if detected early, a very low proportion of the eligible population undergoes screening for this form of cancer. Integrating a genomic screening profile as a component of existing screening programs for CRC could potentially improve the effectiveness of population screening by allowing the assignment of individuals to different types and intensities of screening and also by potentially increasing the uptake of existing screening programs. We evaluated the utility and predictive value of genomic profiling as applied to CRC, and as a potential component of a population-based cancer screening program. We generated simulated data representing a typical North American population including a variety of genetic profiles, with a range of relative risks and prevalences for individual risk genes. We then used these data to estimate parameters characterizing the predictive value of a logistic regression model built on genetic markers for CRC. Meta-analyses of genetic associations with CRC were used in building science to inform the simulation work, and to select genetic variants to include in logistic regression model-building using data from the ARCTIC study in Ontario, which included 1,200 CRC cases and a similar number of cancer-free population-based controls. Our simulations demonstrate that for reasonable assumptions involving modest relative risks for individual genetic variants, that substantial predictive power can be achieved when risk variants are common (e.g., prevalence > 20%) and data for enough risk variants are available (e.g., ~140–160). Pilot work in population data shows modest, but statistically significant predictive utility for a small collection of risk variants, smaller in effect than age and gender alone in predicting an individual’s CRC risk. Further genotyping and many more samples will be required, and indeed the discovery of many more risk loci associated with CRC before the question of the potential utility of germline genomic profiling can be definitively answered

    Submicron and Nanometer Structures Technology and Research

    Get PDF
    Contains reports on sixteen research projects and a list of publications.Joint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001National Science Foundation Grant ECS 90-16437Semiconductor Research Corporation Contract 90-SP-080U.S. Navy - Naval Research Laboratory Contract N00014-90-K-2018IBM CorporationU.S. Air Force - Office of Scientific Research Grant F49620-92-J-0064National Science Foundation Grant DMR 87-19217National Science Foundation Grant DMR 90-22933National Aeronautics and Space Administration Contract NAS8-36748National Aeronautics and Space Administration Grant NAGW-2003National Science Foundation Grant DMR 90-01698Spire Corporatio

    Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics

    Get PDF
    Funding Information: Researchers were funded by investment from the European Regional Development Fund (ERDF) and the European Social Fund (ESF) Convergence Programme for Cornwall and the Isles of Scilly [J.T.]; European Research Council (ERC) [grant: SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC to T.M.F., A.R.W.], [ERC Consolidator Grant, ERC-2014-CoG-648916 to V.W.V.J.], [P.R.N.]; University of Bergen, KG Jebsen and Helse Vest [P.R.N.]; Wellcome Trust Senior Investigator Awards [A.T.H. (WT098395), M.I.M. (WT098381)]; National Institute for Health Research (NIHR) Senior Investigator Award (NF-SI-0611–10219); Sir Henry Dale Fellowship (Wellcome Trust and Royal Society grant: WT104150) [R.M.F., R.N.B.]; 4-year studentship (Grant Code: WT083431MF) [R.C.R]; the European Research Council under the European Union’s Seventh Framework Programme (FP/2007– 2013)/ERC Grant Agreement (grant number 669545; Develop Obese) [D.A.L.]; US National Institute of Health (grant: R01 DK10324) [D.A.L, C.L.R]; Wellcome Trust GWAS grant (WT088806) [D.A.L] and NIHR Senior Investigator Award (NF-SI-0611–10196) [D.A.L]; Wellcome Trust Institutional Strategic Support Award (WT097835MF) [M.A.T.]; The Diabetes Research and Wellness Foundation Non-Clinical Fellowship [J.T.]; Australian National Health and Medical Research Council Early Career Fellowship (APP1104818) [N.M.W.]; Daniel B. Burke Endowed Chair for Diabetes Research [S.F.A.G.]; UK Medical Research Council Unit grants MC_UU_12013_5 [R.C.R, L.P, S.R, C.L.R, D.M.E., D.A.L.] and MC_UU_12013_4 [D.M.E.]; Medical Research Council (grant: MR/M005070/1) [M.N.W., S.E.J.]; Australian Research Council Future Fellowship (FT130101709) [D.M.E] and (FT110100548) [S.E.M.]; NIHR Oxford Biomedical Research Centre (BRC); Oak Foundation Fellowship and Novo Nordisk Foundation (12955) [B.F.]; FRQS research scholar and Clinical Scientist Award by the Canadian Diabetes Association and the Maud Menten Award from the Institute of Genetics– Canadian Institute of Health Research (CIHR) [MFH]; CIHR— Frederick Banting and Charles Best Canada Graduate Scholarships [C.A.]; FRQS [L.B.]; Netherlands Organization for Health Research and Development (ZonMw–VIDI 016.136.361) [V.W.V.J.]; National Institute on Aging (R01AG29451) [J.M.M.]; 2010–2011 PRIN funds of the University of Ferrara—Holder: Prof. Guido Barbujani, Supervisor: Prof. Chiara Scapoli—and in part sponsored by the European Foundation for the Study of Diabetes (EFSD) Albert Renold Travel Fellowships for Young Scientists, ‘5 per mille’ contribution assigned to the University of Ferrara, income tax return year 2009 and the ENGAGE Exchange and Mobility Program for ENGAGE training funds, ENGAGE project, grant agreement HEALTH-F4–2007-201413 [L.M.]; ESRC (RES-060–23-0011) [C.L.R.]; National Institute of Health Research ([S.D., M.I.M.], Senior Investigator Award (NF-SI-0611–10196) [D.A.L]); Australian NHMRC Fellowships Scheme (619667) [G.W.M]. For study-specific funding, please see Supplementary Material. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Funding to pay the Open Access publication charges for this article was provided by the Charity Open Access Fund (COAF). Funding Information: We are extremely grateful to the participants and families who contributed to all of the studies and the teams of investigators involved in each one. These include interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. This research has been conducted using the UK Biobank Resource (Application numbers 7036 and 12703). For additional study-specific acknowledgements, please see Supplementary Material. Conflict of Interest statement. D.A.L. has received support from Roche Diagnostics and Medtronic for biomarker research unrelated to the work presented here. Funding Researchers were funded by investment from the European Regional Development Fund (ERDF) and the European Social Fund (ESF) Convergence Programme for Cornwall and the Isles of Scilly [J.T.]; European Research Council (ERC) [grant: SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC to T.M.F., A.R.W.], [ERC Consolidator Grant, ERC-2014-CoG-648916 to V.W.V.J.], [P.R.N.]; University of Bergen, KG Jebsen and Helse Vest [P.R.N.]; Wellcome Trust Senior Investigator Awards [A.T.H. (WT098395), M.I.M. (WT098381)]; National Institute for Health Research (NIHR) Senior Investigator Award (NF-SI-0611-10219); Sir Henry Dale Fellowship (Wellcome Trust and Royal Society grant: WT104150) [R.M.F., R.N.B.]; 4-year studentship (Grant Code: WT083431MF) [R.C.R]; the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement (grant number 669545; Develop Obese) [D.A.L.]; US National Institute of Health (grant: R01 DK10324) [D.A.L, C.L.R]; Wellcome Trust GWAS grant (WT088806) [D.A.L] and NIHR Senior Investigator Award (NF-SI-0611-10196) [D.A.L]; Wellcome Trust Institutional Strategic Support Award (WT097835MF) [M.A.T.]; The Diabetes Research and Wellness Foundation Non-Clinical Fellowship [J.T.]; Australian National Health and Medical Research Council Early Career Fellowship (APP1104818) [N.M.W.]; Daniel B. Burke Endowed Chair for Diabetes Research [S.F.A.G.]; UK Medical Research Council Unit grants MC_UU_12013_5 [R.C.R, L.P, S.R, C.L.R, D.M.E., D.A.L.] and MC_UU_12013_4 [D.M.E.]; Medical Research Council (grant: MR/M005070/1) [M.N.W., S.E.J.]; Australian Research Council Future Fellowship (FT130101709) [D.M.E] and (FT110100548) [S.E.M.]; NIHR Oxford Biomedical Research Centre (BRC); Oak Foundation Fellowship and Novo Nordisk Foundation (12955) [B.F.]; FRQS research scholar and Clinical Scientist Award by the Canadian Diabetes Association and the Maud Menten Award from the Institute of Genetics-Canadian Institute of Health Research (CIHR) [MFH]; CIHR-Frederick Banting and Charles Best Canada Graduate Scholarships [C.A.]; FRQS [L.B.]; Netherlands Organization for Health Research and Development (ZonMw-VIDI 016.136.361) [V.W.V.J.]; National Institute on Aging (R01AG29451) [J.M.M.]; 2010-2011 PRIN funds of the University of Ferrara-Holder: Prof. Guido Barbujani, Supervisor: Prof. Chiara Scapoli-and in part sponsored by the European Foundation for the Study of Diabetes (EFSD) Albert Renold Travel Fellowships for Young Scientists, '5 per mille' contribution assigned to the University of Ferrara, income tax return year 2009 and the ENGAGE Exchange and Mobility Program for ENGAGE training funds, ENGAGE project, grant agreement HEALTH-F4-2007-201413 [L.M.]; ESRC (RES-060-23-0011) [C.L.R.]; National Institute of Health Research ([S.D., M.I.M.], Senior Investigator Award (NFSI-0611-10196) [D.A.L]); Australian NHMRC Fellowships Scheme (619667) [G.W.M]. For study-specific funding, please see Supplementary Material. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Funding to pay the Open Access publication charges for this article was provided by the Charity Open Access Fund (COAF). Publisher Copyright: © The Author(s) 2018.Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P<5 x 10(-8). In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.Peer reviewe
    corecore