145 research outputs found

    Quantum evolution across singularities: the case of geometrical resolutions

    Full text link
    We continue the study of time-dependent Hamiltonians with an isolated singularity in their time dependence, describing propagation on singular space-times. In previous work, two of us have proposed a "minimal subtraction" prescription for the simplest class of such systems, involving Hamiltonians with only one singular term. On the other hand, Hamiltonians corresponding to geometrical resolutions of space-time tend to involve multiple operator structures (multiple types of dependence on the canonical variables) in an essential way. We consider some of the general properties of such (near-)singular Hamiltonian systems, and further specialize to the case of a free scalar field on a two-parameter generalization of the null-brane space-time. We find that the singular limit of free scalar field evolution exists for a discrete subset of the possible values of the two parameters. The coordinates we introduce reveal a peculiar reflection property of scalar field propagation on the generalized (as well as the original) null-brane. We further present a simple family of pp-wave geometries whose singular limit is a light-like hyperplane (discontinuously) reflecting the positions of particles as they pass through it.Comment: 25 pages, 1 figur

    A Matrix Model for the Null-Brane

    Full text link
    The null-brane background is a simple smooth 1/2 BPS solution of string theory. By tuning a parameter, this background develops a big crunch/big bang type singularity. We construct the DLCQ description of this space-time in terms of a Yang-Mills theory on a time-dependent space-time. Our dual Matrix description provides a non-perturbative framework in which the fate of both (null) time, and the string S-matrix can be studied.Comment: 26 pages, LaTeX; references adde

    Growth, microstructure, and failure of crazes in glassy polymers

    Full text link
    We report on an extensive study of craze formation in glassy polymers. Molecular dynamics simulations of a coarse-grained bead-spring model were employed to investigate the molecular level processes during craze nucleation, widening, and breakdown for a wide range of temperature, polymer chain length NN, entanglement length NeN_e and strength of adhesive interactions between polymer chains. Craze widening proceeds via a fibril-drawing process at constant drawing stress. The extension ratio is determined by the entanglement length, and the characteristic length of stretched chain segments in the polymer craze is Ne/3N_e/3. In the craze, tension is mostly carried by the covalent backbone bonds, and the force distribution develops an exponential tail at large tensile forces. The failure mode of crazes changes from disentanglement to scission for N/Ne10N/N_e\sim 10, and breakdown through scission is governed by large stress fluctuations. The simulations also reveal inconsistencies with previous theoretical models of craze widening that were based on continuum level hydrodynamics

    The effect of dietary calcium inclusion on broiler gastrointestinal pH: quantification and method optimization

    Get PDF
    There is little consensus as to the most appropriate methodology for the measurement of gastrointestinal pH in chickens. An experiment was conducted to establish the optimum sampling method for the determination of broiler digesta pH in birds fed differing levels of dietary calcium. Ross 308 broilers (n = 60) were fed one of two experimental diets, one containing 0.8% monocalcium phosphate and 2% limestone and one containing 0.4% monocalcium phosphate and 1% limestone. Four factors were investigated to determine the most appropriate method of measuring broiler gastrointestinal digesta pH: removal from the tract, prolonged air exposure, altering the temperature of the assay, and controlling the water content of the digesta. The conditions were assessed at bird ages from 7 to 42 d post hatch. Dietary Ca content had no significant effect on in situ pH, but it contributed towards variance in ex situ pH of both gizzard and duodenum digesta

    D-terms and D-strings in open string models

    Full text link
    We study the Fayet-Iliopoulos (FI) D-terms on D-branes in type II Calabi-Yau backgrounds. We provide a simple worldsheet proof of the fact that, at tree level, these terms only couple to scalars in closed string hypermultiplets. At the one-loop level, the D-terms get corrections only if the gauge group has an anomalous spectrum, with the anomaly cancelled by a Green-Schwarz mechanism. We study the local type IIA model of D6-branes at SU(3) angles and show that, as in field theory, the one-loop correction suffers from a quadratic divergence in the open string channel. By studying the closed string channel, we show that this divergence is related to a closed string tadpole, and is cancelled when the tadpole is cancelled. Next, we study the cosmic strings that arise in the supersymmetric phases of these systems in light of recent work of Dvali et. al. In the type IIA intersecting D6-brane examples, we identify the D-term strings as D4-branes ending on the D6-branes. Finally, we use N=1 dualities to relate these results to previous work on the FI D-term of heterotic strings.Comment: 29 pages, 5 figures; v2: improved referencin

    D-instantons and Closed String Tachyons in Misner Space

    Full text link
    We investigate closed string tachyon condensation in Misner space, a toy model for big bang universe. In Misner space, we are able to condense tachyonic modes of closed strings in the twisted sectors, which is supposed to remove the big bang singularity. In order to examine this, we utilize D-instanton as a probe. First, we study general properties of D-instanton by constructing boundary state and effective action. Then, resorting to these, we are able to show that tachyon condensation actually deforms the geometry such that the singularity becomes milder.Comment: 24 pages, 1 figure, minor change

    A Matrix Big Bang

    Full text link
    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control.Comment: 25 pages, LaTeX; v2: discussion of singularity of Einstein frame metric added, references adde

    Racetrack Inflation

    Full text link
    We develop a model of eternal topological inflation using a racetrack potential within the context of type IIB string theory with KKLT volume stabilization. The inflaton field is the imaginary part of the K\"ahler structure modulus, which is an axion-like field in the 4D effective field theory. This model does not require moving branes, and in this sense it is simpler than other models of string theory inflation. Contrary to single-exponential models, the structure of the potential in this example allows for the existence of saddle points between two degenerate local minima for which the slow-roll conditions can be satisfied in a particular range of parameter space. We conjecture that this type of inflation should be present in more general realizations of the modular landscape. We also consider `irrational' models having a dense set of minima, and discuss their possible relevance for the cosmological constant problem.Comment: 23 pages 7 figures. The final version with minor modifications, to appear in JHE

    Insightful D-branes

    Full text link
    We study a simple model of a black hole in AdS and obtain a holographic description of the region inside the horizon. A key role is played by the dynamics of the scalar fields in the dual gauge theory. This leads to a proposal for a dual description of D-branes falling through the horizon of any AdS black hole. The proposal uses a field-dependent time reparameterization in the field theory. We relate this reparametrization to various gauge invariances of the theory. Finally, we speculate on information loss and the black hole singularity in this context.Comment: 30 pages, 4 figures. v2: typos fixed, references and acknowledgements added, a few small changes in the tex

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio
    corecore