196 research outputs found
Elaboration and characterization of Fe1βxO thin films sputter deposited from magnetite target
Majority of the authors report elaboration of iron oxide thin films by reactive magnetron sputtering from an iron target with ArβO2 gas mixture. Instead of using the reactive sputtering of a metallic target we report here the preparation of Fe1βxOthin films, directly sputtered froma magnetite target in a pure argon gas flow with a bias power applied. This oxide is generally obtained at very low partial oxygen pressure and high temperature.We showed that bias sputtering which can be controlled very easily can lead to reducing conditions during deposition of oxide thin film on simple glass substrates. The proportion of wustite was directly adjusted bymodifying the power of the substrate polarization. Atomic force microscopy was used to observe these nanostructured layers. MΓΆssbauer measurements and electrical properties versus bias polarization and annealing temperature are also reported
Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance
We investigate strong coupling effects on the superfluid phase transition in
a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance
describes a composite quasi-Boson, which can give rise to an additional pairing
interaction between the Fermi atoms. This attractive interaction becomes
stronger as the threshold energy of the Feshbach resonance two-particle bound
state is lowered. In a recent paper, we showed that in the uniform Fermi gas,
this tunable pairing interaction naturally leads to a BCS-BEC crossover of the
Nozi`eres and Schmitt-Rink kind, in which the BCS-type superfluid phase
transition continuously changes into the BEC-type as the threshold energy is
decreased. In this paper, we extend our previous work by including the effect
of a harmonic trap potential, treated within the local density approximation
(LDA). We also give results for both weak and strong coupling to the Feshbach
resonance. We show that the BCS-BEC crossover phenomenon strongly modifies the
shape of the atomic density profile at the superfluid phase transition
temperature Tc, reflecting the change of the dominant particles going from
Fermi atoms to composite Bosons. In the BEC regime, these composite Bosons are
shown to first appear well above Tc. We also discuss the "phase diagram" above
Tc as a function of the tunable threshold energy. We introduce a characteristic
temperature T* describing the effective crossover in the normal phase from a
Fermi gas of atoms to a gas of stable molecules.Comment: 43 pages, 13 figures (submitted to PRA
Unintentional high density p-type modulation doping of a GaAs/AlAs core-multi-shell nanowire
Achieving significant doping in GaAs/AlAs core/shell nanowires (NWs) is of
considerable technological importance but remains a challenge due to the
amphoteric behavior of the dopant atoms. Here we show that placing a narrow
GaAs quantum well in the AlAs shell effectively getters residual carbon
acceptors leading to an \emph{unintentional} p-type doping. Magneto-optical
studies of such a GaAs/AlAs core multi-shell NW reveal quantum confined
emission. Theoretical calculations of NW electronic structure confirm quantum
confinement of carriers at the core/shell interface due to the presence of
ionized carbon acceptors in the 1~nm GaAs layer in the shell.
Micro-photoluminescence in high magnetic field shows a clear signature of
avoided crossings of the Landau level emission line with the Landau
level TO phonon replica. The coupling is caused by the resonant hole-phonon
interaction, which points to a large 2D hole density in the structure.Comment: just published in Nano Letters
(http://pubs.acs.org/doi/full/10.1021/nl500818k
Giant Electroresistance in Edge Metal-Insulator-Metal Tunnel Junctions Induced by Ferroelectric Fringe Fields
An enormous amount of research activities has been devoted to developing new types of non-volatile memory devices as the potential replacements of current flash memory devices. Theoretical device modeling was performed to demonstrate that a huge change of tunnel resistance in an Edge Metal-Insulator-Metal (EMIM) junction of metal crossbar structure can be induced by the modulation of electric fringe field, associated with the polarization reversal of an underlying ferroelectric layer. It is demonstrated that single three-terminal EMIM/Ferroelectric structure could form an active memory cell without any additional selection devices. This new structure can open up a way of fabricating all-thin-film-based, high-density, high-speed, and low-power non-volatile memory devices that are stackable to realize 3D memory architectureope
Differential regulation by AMP and ADP of AMPK complexes containing different Ξ³ subunit isoforms
The Ξ³ subunits of heterotrimeric AMPK complexes contain the binding sites for the regulatory adenine nucleotides AMP, ADP and ATP. We addressed whether complexes containing different Ξ³ isoforms display different responses to adenine nucleotides by generating cells stably expressing FLAG-tagged versions of the Ξ³ 1, Ξ³ 2 or Ξ³ 3 isoform. When assayed at a physiological ATP concentration (5 mM), Ξ³ 1- and Ξ³ 2-containing complexes were allosterically activated almost 10-fold by AMP, with EC50 values one to two orders of magnitude lower than the ATP concentration. By contrast, Ξ³ 3 complexes were barely activated by AMP under these conditions, although we did observe some activation at lower ATP concentrations. Despite this, all three complexes were activated, due to increased Thr172 phosphorylation, when cells were incubated with mitochondrial inhibitors that increase cellular AMP. With Ξ³ 1 complexes, activation and Thr172 phosphorylation induced by the upstream kinase LKB1 [liver kinase B1; but not calmodulin-dependent kinase kinase (CaMKKΞ²)] in cell-free assays was markedly promoted by AMP and, to a smaller extent and less potently, by ADP. However, effects of AMP or ADP on activation and phosphorylation of the Ξ³ 2 and Ξ³ 3 complexes were small or insignificant. Binding of AMP or ADP protected all three Ξ³ subunit complexes against inactivation by Thr172 dephosphorylation; with Ξ³ 2 complexes, ADP had similar potency to AMP, but with Ξ³ 1 and Ξ³ 3 complexes, ADP was less potent than AMP. Thus, AMPK complexes containing different Ξ³ subunit isoforms respond differently to changes in AMP, ADP or ATP. These differences may tune the responses of the isoforms to fit their differing physiological roles
Activation of transcription factors by extracellular nucleotides in immune and related cell types
Extracellular nucleotides, acting through P2 receptors, can regulate gene expression via intracellular signaling pathways that control the activity of transcription factors. Relatively little is known about the activation of transcription factors by nucleotides in immune cells. The NF-ΞΊB family of transcription factors is critical for many immune and inflammatory responses. Nucleotides released from damaged or stressed cells can act alone through certain P2 receptors to alter NF-ΞΊB activity or they can enhance responses induced by pathogen-associated molecules such as LPS. Nucleotides have also been shown to regulate the activity of other transcription factors (AP-1, NFAT, CREB and STAT) in immune and related cell types. Here, we provide an overview of transcription factors shown to be activated by nucleotides in immune cells, and describe what is known about their mechanisms of activation and potential functions. Furthermore, we propose areas for future work in this new and expanding field
Enhancement of immune response of HBsAg loaded poly(L-lactic acid) microspheres against Hepatitis B through incorporation of alum and chitosan
Purpose: Poly (L-lactic acid) (PLA) microparticles encapsulating Hepatitis B surface antigen (HBsAg) with alum and chitosan were investigated for their potential as a vaccine delivery system.
Methods: The microparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method with polyvinyl alcohol (PVA) or chitosan as the external phase stabilising agent showed a significant increase in the encapsulation efficiency of the antigen.
Results: PLA-Alum and PLA-chitosan microparticles induced HBsAg serum specific IgG antibody responses significantly higher than PLA only microparticles and free antigen following subcutaneous administration. Chitosan not only imparted a positive charge to the surface of the microparticles but was also able to increase the serum specific IgG antibody responses significantly.
Conclusions: The cytokine assays showed that the serum IgG antibody response induced is different according to the formulation, indicated by the differential levels of interleukin 4 (IL-4), interleukin 6 (IL-6) and interferon gamma (IFN-Ξ³). The microparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-4, IL-6 and IFN-Ξ³
A Kinome RNAi Screen Identified AMPK as Promoting Poxvirus Entry through the Control of Actin Dynamics
Poxviruses include medically important human pathogens, yet little is known about the specific cellular factors essential for their replication. To identify genes essential for poxvirus infection, we used high-throughput RNA interference to screen the Drosophila kinome for factors required for vaccinia infection. We identified seven genes including the three subunits of AMPK as promoting vaccinia infection. AMPK not only facilitated infection in insect cells, but also in mammalian cells. Moreover, we found that AMPK is required for macropinocytosis, a major endocytic entry pathway for vaccinia. Furthermore, we show that AMPK contributes to other virus-independent actin-dependent processes including lamellipodia formation and wound healing, independent of the known AMPK activators LKB1 and CaMKK. Therefore, AMPK plays a highly conserved role in poxvirus infection and actin dynamics independent of its role as an energy regulator
Elevated Levels of the Polo Kinase Cdc5 Override the Mec1/ATR Checkpoint in Budding Yeast by Acting at Different Steps of the Signaling Pathway
Checkpoints are surveillance mechanisms that constitute a barrier to oncogenesis by preserving genome integrity. Loss of checkpoint function is an early event in tumorigenesis. Polo kinases (Plks) are fundamental regulators of cell cycle progression in all eukaryotes and are frequently overexpressed in tumors. Through their polo box domain, Plks target multiple substrates previously phosphorylated by CDKs and MAPKs. In response to DNA damage, Plks are temporally inhibited in order to maintain the checkpoint-dependent cell cycle block while their activity is required to silence the checkpoint response and resume cell cycle progression. Here, we report that, in budding yeast, overproduction of the Cdc5 polo kinase overrides the checkpoint signaling induced by double strand DNA breaks (DSBs), preventing the phosphorylation of several Mec1/ATR targets, including Ddc2/ATRIP, the checkpoint mediator Rad9, and the transducer kinase Rad53/CHK2. We also show that high levels of Cdc5 slow down DSB processing in a Rad9-dependent manner, but do not prevent the binding of checkpoint factors to a single DSB. Finally, we provide evidence that Sae2, the functional ortholog of human CtIP, which regulates DSB processing and inhibits checkpoint signaling, is regulated by Cdc5. We propose that Cdc5 interferes with the checkpoint response to DSBs acting at multiple levels in the signal transduction pathway and at an early step required to resect DSB ends
AMP-Activated Kinase Restricts Rift Valley Fever Virus Infection by Inhibiting Fatty Acid Synthesis
The cell intrinsic innate immune responses provide a first line of defense against viral infection, and often function by targeting cellular pathways usurped by the virus during infection. In particular, many viruses manipulate cellular lipids to form complex structures required for viral replication, many of which are dependent on de novo fatty acid synthesis. We found that the energy regulator AMPK, which potently inhibits fatty acid synthesis, restricts infection of the Bunyavirus, Rift Valley Fever Virus (RVFV), an important re-emerging arthropod-borne human pathogen for which there are no effective vaccines or therapeutics. We show restriction of RVFV both by AMPK and its upstream activator LKB1, indicating an antiviral role for this signaling pathway. Furthermore, we found that AMPK is activated during RVFV infection, leading to the phosphorylation and inhibition of acetyl-CoA carboxylase, the first rate-limiting enzyme in fatty acid synthesis. Activating AMPK pharmacologically both restricted infection and reduced lipid levels. This restriction could be bypassed by treatment with the fatty acid palmitate, demonstrating that AMPK restricts RVFV infection through its inhibition of fatty acid biosynthesis. Lastly, we found that this pathway plays a broad role in antiviral defense since additional viruses from disparate families were also restricted by AMPK and LKB1. Therefore, AMPK is an important component of the cell intrinsic immune response that restricts infection through a novel mechanism involving the inhibition of fatty acid metabolism
- β¦