2,106 research outputs found

    The Extraordinary `Superthin' Spiral Galaxy UGC7321. I. Disk Color Gradients and Global Properties from Multiwavelength Observations

    Full text link
    We present B- and R-band imaging and photometry, H-alpha narrow-band imaging, NIR H-band imaging, and HI 21-cm spectroscopy of the nearby Sd spiral galaxy UGC7321. UGC7321 exhibits a remarkably thin stellar disk with no bulge component. The galaxy has a very diffuse, low surface brightness disk, which appears to suffer little internal extinction in spite of its edge-on geometry. The UGC7321 disk shows significant B-R color gradients in both the radial and vertical directions. These color gradients cannot be explained solely by dust and are indicative of changes in the mix of stellar ages and/or metallicity as a function of both radius and height above the galaxy plane. The outer regions of the UGC7321 disk are too blue to be explained by low metallicity alone (B-R<0.6), and must be relatively young. However, the galaxy also contains stellar populations with B-R>1.1, indicating it is not a young or recently-formed galaxy. The disk of UGC7321 is not a simple exponential, but exhibits a light excess at small radii, as well as distinct surface brightness zones. Together the properties of UGC7321 imply that it is an under-evolved galaxy in both a dynamical and in a star-formation sense. (Abridged)Comment: Accepted to the Astronomical Journal; 28 pages, 1 table and 21 figures (GIF and postscript

    Quasi-two-dimensional hole ordering and dimerized state in the CuO2-chain layers in Sr14Cu24O41

    Full text link
    Neutron scattering experiments have been performed on Sr14_{14}Cu24_{24}O41_{41} which consists of both chains and ladders of copper ions. We observed that the magnetic excitations from the CuO2_2 chain have two branches and that both branches are weakly dispersive along the aa and cc axes. The ω\omega-QQ dispersion relation as well as the intensities can be reasonably described by a random phase approximation with intradimer coupling between next-nearest-neighbor copper spins JJ=11 meV, interdimer coupling along the c axis JcJ_c=0.75 meV, and interdimer coupling along the a axis JaJ_a=0.75 meV. The dimer configuration indicates a quasi-two-dimensional hole ordering, resulting in an ordering of magnetic Cu2+^{2+} with spin-1/2 and nonmagnetic Cu, which forms the Zhang-Rice singlet. We have also studied the effect of Ca substitution for Sr on the dimer and the hole ordering.Comment: 7 pages, Revtex, 10 figures, Submitted to Phys. Rev.

    Risk-shifting Through Issuer Liability and Corporate Monitoring

    Get PDF
    This article explores how issuer liability re-allocates fraud risk and how risk allocation may reduce the incidence of fraud. In the US, the apparent absence of individual liability of officeholders and insufficient monitoring by insurers under-mine the potential deterrent effect of securities litigation. The underlying reasons why both mechanisms remain ineffective are collective action problems under the prevailing dispersed ownership structure, which eliminates the incentives to moni-tor set by issuer liability. This article suggests that issuer liability could potentially have a stronger deterrent effect when it shifts risk to individuals or entities holding a larger financial stake. Thus, it would enlist large shareholders in monitoring in much of Europe. The same risk-shifting effect also has implications for the debate about the relationship between securities litigation and creditor interests. Credi-tors’ claims should not be given precedence over claims of defrauded investors (e.g., because of the capital maintenance principle), since bearing some of the fraud risk will more strongly incentivise large creditors, such as banks, to monitor the firm in jurisdictions where corporate debt is relatively concentrated

    Decoherence, einselection, and the quantum origins of the classical

    Full text link
    Decoherence is caused by the interaction with the environment. Environment monitors certain observables of the system, destroying interference between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly non-local "Schr\"odinger cat" states. Classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit: Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation.Comment: Final version of the review, with brutally compressed figures. Apart from the changes introduced in the editorial process the text is identical with that in the Rev. Mod. Phys. July issue. Also available from http://www.vjquantuminfo.or

    A search for resonant production of ttˉt\bar{t} pairs in $4.8\ \rm{fb}^{-1}ofintegratedluminosityof of integrated luminosity of p\bar{p}collisionsat collisions at \sqrt{s}=1.96\ \rm{TeV}$

    Get PDF
    We search for resonant production of tt pairs in 4.8 fb^{-1} integrated luminosity of ppbar collision data at sqrt{s}=1.96 TeV in the lepton+jets decay channel, where one top quark decays leptonically and the other hadronically. A matrix element reconstruction technique is used; for each event a probability density function (pdf) of the ttbar candidate invariant mass is sampled. These pdfs are used to construct a likelihood function, whereby the cross section for resonant ttbar production is estimated, given a hypothetical resonance mass and width. The data indicate no evidence of resonant production of ttbar pairs. A benchmark model of leptophobic Z \rightarrow ttbar is excluded with m_{Z'} < 900 GeV at 95% confidence level.Comment: accepted for publication in Physical Review D Sep 21, 201

    Precision Top-Quark Mass Measurements at CDF

    Get PDF
    We present a precision measurement of the top-quark mass using the full sample of Tevatron s=1.96\sqrt{s}=1.96 TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb1fb^{-1}. Using a sample of ttˉt\bar{t} candidate events decaying into the lepton+jets channel, we obtain distributions of the top-quark masses and the invariant mass of two jets from the WW boson decays from data. We then compare these distributions to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with {\it in situ} calibration. The likelihood fit of the templates from signal and background events to the data yields the single most-precise measurement of the top-quark mass, \mtop = 172.85 \pm0.71(stat) 0.71 (stat) \pm0.85(syst)GeV/c2. 0.85 (syst) GeV/c^{2}.Comment: submitted to Phys. Rev. Let

    Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set

    Get PDF
    We combine the results of searches for the standard model Higgs boson based on the full CDF Run II data set obtained from sqrt(s) = 1.96 TeV p-pbar collisions at the Fermilab Tevatron corresponding to an integrated luminosity of 9.45/fb. The searches are conducted for Higgs bosons that are produced in association with a W or Z boson, have masses in the range 90-150 GeV/c^2, and decay into bb pairs. An excess of data is present that is inconsistent with the background prediction at the level of 2.5 standard deviations (the most significant local excess is 2.7 standard deviations).Comment: To be published in Phys. Rev. Lett (v2 contains minor updates based on comments from PRL

    An Overview of the 2014 ALMA Long Baseline Campaign

    Get PDF
    A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.Comment: 11 pages, 7 figures, 2 tables; accepted for publication in the Astrophysical Journal Letters; this version with small changes to affiliation

    Measurement of the WZWZ Cross Section and Triple Gauge Couplings in ppˉp \bar p Collisions at s=1.96\sqrt{s} = 1.96 TeV

    Get PDF
    This Letter describes the current most precise measurement of the WZWZ production cross section as well as limits on anomalous WWZWWZ couplings at a center-of-mass energy of 1.96 TeV in proton-antiproton collisions for the Collider Detector at Fermilab (CDF). WZWZ candidates are reconstructed from decays containing three charged leptons and missing energy from a neutrino, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector (7.1 fb1^{-1} of integrated luminosity), 63 candidate events are observed with the expected background contributing 8±18 \pm 1 events. The measured total cross section σ(ppˉWZ)=3.930.53+0.60(stat)0.46+0.59(syst)\sigma (p \bar p \to WZ) = 3.93_{-0.53}^{+0.60}(\text{stat})_{-0.46}^{+0.59}(\text{syst}) pb is in good agreement with the standard model prediction of 3.50±0.213.50\pm 0.21. The same sample is used to set limits on anomalous WWZWWZ couplings.Comment: Resubmission to PRD-RC after acceptance (27 July 2012
    corecore