288 research outputs found

    Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry

    No full text
    International audienceIn this study, we measure the extinction efficiency at 532 nm of absorbing aerosol particles coated with a non-absorbing solid and liquid organic shell with coating thickness varying between 5 and 100 nm using cavity ring down aerosol spectrometry. For this purpose, we use nigrosin, an organic black dye, as a model absorbing core and two non-absorbing organic substances as shells, glutaric acid (GA) and Di-Ethyl-Hexyl-Sebacate (DEHS). The measured behavior of the coated particles is consistent with Mie calculations of core-shell particles. Errors between measured and calculated values for nigrosin coated with GA and DEHS are between 0.5% and 10.5% and between 0.5% and 9%, respectively. However, it is evident that the calculations are in better agreement with the measured results for thinner coatings. Possible reasons for these discrepancies are discussed

    Binary pattern tile set synthesis is NP-hard

    Full text link
    In the field of algorithmic self-assembly, a long-standing unproven conjecture has been that of the NP-hardness of binary pattern tile set synthesis (2-PATS). The kk-PATS problem is that of designing a tile assembly system with the smallest number of tile types which will self-assemble an input pattern of kk colors. Of both theoretical and practical significance, kk-PATS has been studied in a series of papers which have shown kk-PATS to be NP-hard for k=60k = 60, k=29k = 29, and then k=11k = 11. In this paper, we close the fundamental conjecture that 2-PATS is NP-hard, concluding this line of study. While most of our proof relies on standard mathematical proof techniques, one crucial lemma makes use of a computer-assisted proof, which is a relatively novel but increasingly utilized paradigm for deriving proofs for complex mathematical problems. This tool is especially powerful for attacking combinatorial problems, as exemplified by the proof of the four color theorem by Appel and Haken (simplified later by Robertson, Sanders, Seymour, and Thomas) or the recent important advance on the Erd\H{o}s discrepancy problem by Konev and Lisitsa using computer programs. We utilize a massively parallel algorithm and thus turn an otherwise intractable portion of our proof into a program which requires approximately a year of computation time, bringing the use of computer-assisted proofs to a new scale. We fully detail the algorithm employed by our code, and make the code freely available online

    Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Get PDF
    Climate change will induce extended heat waves to parts of the vegetation more frequently. High temperatures may act as stress (thermal stress) on plants changing emissions of biogenic volatile organic compounds (BVOCs). As BVOCs impact the atmospheric oxidation cycle and aerosol formation, it is important to explore possible alterations of BVOC emissions under high temperature conditions. Applying heat to European beech, Palestine oak, Scots pine, and Norway spruce in a laboratory setup either caused the well-known exponential increases of BVOC emissions or induced irreversible changes of BVOC emissions. Considering only irreversible changes of BVOC emissions as stress impacts, we found that high temperatures decreased the <i>de novo</i> emissions of monoterpenes, sesquiterpenes and phenolic BVOC. This behaviour was independent of the tree species and whether the <i>de novo</i> emissions were constitutive or induced by biotic stress. <br><br> In contrast, application of thermal stress to conifers amplified the release of monoterpenes stored in resin ducts of conifers and induced emissions of green leaf volatiles. In particular during insect attack on conifers, the plants showed <i>de novo</i> emissions of sesquiterpenes and phenolic BVOCs, which exceeded constitutive monoterpene emissions from pools. The heat-induced decrease of <i>de novo</i> emissions was larger than the increased monoterpene release caused by damage of resin ducts. For insect-infested conifers the net effect of thermal stress on BVOC emissions could be an overall decrease. <br><br> Global change-induced heat waves may put hard thermal stress on plants. If so, we project that BVOC emissions increase is more than predicted by models only in areas predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOCs. Otherwise overall effects of high temperature stress will be lower increases of BVOC emissions than predicted by algorithms that do not consider stress impacts

    The formation, properties and impact of secondary organic aerosol: current and emerging issues

    Get PDF
    Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed

    Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East

    Get PDF
    Observationā€based and modeling studies have identified the Eastern Mediterranean and Middle East (EMME) region as a prominent climate change hotspot. While several initiatives have addressed the impacts of climate change in parts of the EMME, here we present an updated assessment, covering a wide range of timescales, phenomena and future pathways. Our assessment is based on a revised analysis of recent observations and projections and an extensive overview of the recent scientific literature on the causes and effects of regional climate change. Greenhouse gas emissions in the EMME are growing rapidly, surpassing those of the European Union, hence contributing significantly to climate change. Over the past halfā€century and especially during recent decades, the EMME has warmed significantly faster than other inhabited regions. At the same time, changes in the hydrological cycle have become evident. The observed recent temperature increase of about 0.45Ā°C per decade is projected to continue, although strong global greenhouse gas emission reductions could moderate this trend. In addition to projected changes in mean climate conditions, we call attention to extreme weather events with potentially disruptive societal impacts. These include the strongly increasing severity and duration of heatwaves, droughts and dust storms, as well as torrential rain events that can trigger flash floods. Our review is complemented by a discussion of atmospheric pollution and landā€use change in the region, including urbanization, desertification and forest fires. Finally, we identify sectors that may be critically affected and formulate adaptation and research recommendations toward greater resilience of the EMME region to climate change. The Eastern Mediterranean and Middle East is warming almost two times faster than the global average and other inhabited parts of the world Climate projections indicate a future warming, strongest in summers. Precipitation will likely decrease, particularly in the Mediterranean Virtually all socioā€economic sectors will be critically affected by the projected changes The Eastern Mediterranean and Middle East is warming almost two times faster than the global average and other inhabited parts of the world Climate projections indicate a future warming, strongest in summers. Precipitation will likely decrease, particularly in the Mediterranean Virtually all socioā€economic sectors will be critically affected by the projected change

    Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East

    Get PDF
    Observation-based and modeling studies have identified the Eastern Mediterranean and Middle East (EMME) region as a prominent climate change hotspot. While several initiatives have addressed the impacts of climate change in parts of the EMME, here we present an updated assessment, covering a wide range of timescales, phenomena and future pathways. Our assessment is based on a revised analysis of recent observations and projections and an extensive overview of the recent scientific literature on the causes and effects of regional climate change. Greenhouse gas emissions in the EMME are growing rapidly, surpassing those of the European Union, hence contributing significantly to climate change. Over the past half-century and especially during recent decades, the EMME has warmed significantly faster than other inhabited regions. At the same time, changes in the hydrological cycle have become evident. The observed recent temperature increase of about 0.45 degrees C per decade is projected to continue, although strong global greenhouse gas emission reductions could moderate this trend. In addition to projected changes in mean climate conditions, we call attention to extreme weather events with potentially disruptive societal impacts. These include the strongly increasing severity and duration of heatwaves, droughts and dust storms, as well as torrential rain events that can trigger flash floods. Our review is complemented by a discussion of atmospheric pollution and land-use change in the region, including urbanization, desertification and forest fires. Finally, we identify sectors that may be critically affected and formulate adaptation and research recommendations toward greater resilience of the EMME region to climate change.Peer reviewe

    Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    Get PDF
    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.Research at the University of Cambridge was supported by a Marie Curie Intra-European fellowship (project no. 254319) and the ERC grant no. 279405. We thank the SAPHIR and TNA2012 team in JĆ¼lich for supporting our measurements and the support by EUROCHAMP2 contract no. 228335. The field-work was funded by ERC grant 227463 and the Academy of Finland Centre of Excellence (grants 1118615 and 272041) and by the Office of Science (BER), US Department of Energy via Biogenic Aerosols - Effects on Clouds and Climate (BAECC). European Unionā€™s Horizon 2020 research and innovation programme under grant agreement no. 654109 and previously from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254. We thank the Met Office for use of the NAME model. S.C. thanks the UK Natural Environment Research Council for her studentship

    Analysis of the interaction of monoclonal antibodies with surface IgM on neoplastic B-cells

    Get PDF
    In vitro studies identified three Burkitts lymphoma cell lines, Ramos, MUTU-I and Daudi, that were growth inhibited by anti-IgM antibody. However, only Ramos and MUTU-I were sensitive to monoclonal antibodies (mAb) recognizing the Fc region of surface IgM (anti-FcĪ¼). Experiments using anti-FcĪ¼ mAb (single or non-crossblocking pairs), polyclonal anti-Ī¼ Ab, and hyper-crosslinking with a secondary layer of Ab, showed that growth inhibition of B-cell lines was highly dependent on the extent of IgM crosslinking. This was confirmed by using Fabā€², F(abā€²)2and F(abā€²)3derivatives from anti-FcĪ¼ mAb, where increasing valency caused corresponding increases in growth arrest and apoptosis, presumably as a result of more efficient BCR-crosslinking on the cell surface. The ability of a single mAb to induce growth arrest was highly dependent on epitope specificity, with mAb specific for the Fc region (CĪ¼2ā€“CĪ¼4 domains) being much more effective than those recognizing the Fab region (anti-L chain, anti-Id and anti-FdĪ¼, or CĪ¼1). Only when hyper-crosslinked with polyclonal anti-mouse IgG did the latter result in appreciable growth inhibition. Binding studies showed that these differences in function were not related to differences in the affinity, but probably related to intrinsic crosslinking capacity of mAb. Ā© 1999 Cancer Research Campaig
    • ā€¦
    corecore