385 research outputs found

    Aircraft based four-channel thermal dissociation laser induced fluorescence instrument for simultaneous measurements of NO2, total peroxy nitrate, total alkyl nitrate, and HNO3

    Get PDF
    A four-channel thermal dissociation laser induced fluorescence (TD-LIF) instrument has been developed for simultaneous measurements of nitrogen dioxide (NO2), total peroxy nitrate (∑PNs), total alkyl nitrate (∑ANs) and nitric acid (HNO3). NO2 is measured directly by LIF at 532 nm, whereas organic nitrates and nitric acid are thermally dissociated at distinct temperatures in the inlet to form NO2, which is then measured by LIF. The concentrations of each dissociated species are derived by the differences in measured NO2 relative to the reference colder inlet channel. The TD-LIF was adapted to fly on board the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe 146-301 atmospheric research aircraft in summer 2010, and to date has successfully flown in five field campaigns. This paper reports novel improvements in the TD-LIF instrumentations, including (1) the use of a single wavelength laser, which makes the system compact and relatively cheap; (2) the use of a single beam laser that allows easy alignment and optical stability against the vibrational aircraft environment; and (3) the optical assembly of four detection cells that allow simultaneous and fast (time resolution up to 0.1 s) measurements of NO2, ∑PNs, ∑ANs and HNO3. Laboratory-generated mixtures of PNs, ANs and HNO3 in zero air are converted into NO2 and used to fix the dissociation temperatures of each heated inlet to test the selectivity of the instrument and potential interferences due to recombination reactions of the dissociated products. The effectiveness of the TD-LIF was demonstrated during the RONOCO aircraft campaign (summer 2010). A chemiluminescence system that was measuring NO2 and a broadband cavity enhanced absorption spectrometer (BBCEAS) that was measuring one of the PNs (N2O5) were installed on the same aircraft during the campaign. The in-flight intercomparison of the new TD-LIF with the chemiluminescence system for NO2 measurements and the intercomparison between ∑PNs measured by the TD-LIF and N2O5 by the BBCEAS are used to assess the performance of the TD-LIF

    Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding

    Get PDF
    Hydroxide-catalysis bonding is a precision technique used for jointing components in opto-mechanical systems and has been implemented in the construction of quasi-monolithic silica suspensions in gravitational wave detectors. Future detectors are likely to operate at cryogenic temperatures which will lead to a change in test mass and suspension material. One candidate material is mono-crystalline sapphire. Here results are presented showing the influence of various bonding solutions on the strength of the hydroxide-catalysis bonds formed between sapphire samples, measured both at room temperature and at 77 K, and it is demonstrated that sodium silicate solution is the most promising in terms of strength, producing bonds with a mean strength of 63 MPa. In addition the results show that the strengths of bonds were undiminished when tested at cryogenic temperatures

    Modelado computacional del comportamiento hidrodinĂĄmico de elementos combustibles nucleares

    Get PDF
    La capacidad de generaciĂłn de potencia de una central nuclear estĂĄ limitada por el mecanismo de refrigeraciĂłn del nĂșcleo. El fenĂłmeno termohidrĂĄulico denominado "Flujo CrĂ­tico de Calor" disminuye la capacidad de extracciĂłn de calor del sistema de refrigeraciĂłn modificando abruptamente la transferencia tĂ©rmica entre el elemento combustible y el refrigerante. En este trabajo se modela el comportamiento hidrodinĂĄmico de elementos combustibles nucleares con el objetivo de analizar lospatrones de turbulencia y mezclado entre subcanales. El modelado se centra alrededor de los separadoresde vainas combustibles y el efecto que estos tienen sobre el flujo. Para realizar estas simulaciones seutiliza la herramienta computacional denominada OpenFOAM.Publicado en: MecĂĄnica Computacional vol. XXXV no.32Facultad de IngenierĂ­

    The variable finesse locking technique

    Get PDF
    Virgo is a power recycled Michelson interferometer, with 3 km long Fabry-Perot cavities in the arms. The locking of the interferometer has been obtained with an original lock acquisition technique. The main idea is to lock the instrument away from its working point. Lock is obtained by misaligning the power recycling mirror and detuning the Michelson from the dark fringe. In this way, a good fraction of light escapes through the antisymmetric port and the power build-up inside the recycling cavity is extremely low. The benefit is that all the degrees of freedom are controlled when they are almost decoupled, and the linewidth of the recycling cavity is large. The interferometer is then adiabatically brought on to the dark fringe. This technique is referred to as variable finesse, since the recycling cavity is considered as a variable finesse Fabry-Perot. This technique has been widely tested and allows us to reach the dark fringe in few minutes, in an essentially deterministic way

    Virgo calibration and reconstruction of the gravitational wave strain during VSR1

    Get PDF
    Virgo is a kilometer-length interferometer for gravitational waves detection located near Pisa. Its first science run, VSR1, occured from May to October 2007. The aims of the calibration are to measure the detector sensitivity and to reconstruct the time series of the gravitational wave strain h(t). The absolute length calibration is based on an original non-linear reconstruction of the differential arm length variations in free swinging Michelson configurations. It uses the laser wavelength as length standard. This method is used to calibrate the frequency dependent response of the Virgo mirror actuators and derive the detector in-loop response and sensitivity within ~5%. The principle of the strain reconstruction is highlighted and the h(t) systematic errors are estimated. A photon calibrator is used to check the sign of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz with systematic errors estimated to 6% in amplitude. The phase error is estimated to be 70 mrad below 1.9 kHz and 6 micro-seconds above.Comment: 8 pages, 8 figures, proceedings of Amaldi 8 conference, to be published in Journal of Physics Conference Series (JPCS). Second release: correct typo

    A Cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo

    Full text link
    We present a method to search for transient GWs using a network of detectors with different spectral and directional sensitivities: the interferometer Virgo and the bar detector AURIGA. The data analysis method is based on the measurements of the correlated energy in the network by means of a weighted cross-correlation. To limit the computational load, this coherent analysis step is performed around time-frequency coincident triggers selected by an excess power event trigger generator tuned at low thresholds. The final selection of GW candidates is performed by a combined cut on the correlated energy and on the significance as measured by the event trigger generator. The method has been tested on one day of data of AURIGA and Virgo during September 2005. The outcomes are compared to the results of a stand-alone time-frequency coincidence search. We discuss the advantages and the limits of this approach, in view of a possible future joint search between AURIGA and one interferometric detector.Comment: 11 pages, 6 figures, submitted to CQG special issue for Amaldi 7 Proceeding

    Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects

    Get PDF
    In gravitational-wave detection, special emphasis is put onto searches that focus on cosmic events detected by other types of astrophysical observatories. The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical telescopes and neutrino observatories, provide a trigger time for analyzing gravitational wave data coincident with the event. In certain cases the expected frequency range, source energetics, directional and progenitor information is also available. Beyond allowing the recognition of gravitational waveforms with amplitudes closer to the noise floor of the detector, these triggered searches should also lead to rich science results even before the onset of Advanced LIGO. In this paper we provide a broad review of LIGO's astrophysically triggered searches and the sources they target

    Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run

    Get PDF
    We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during LIGO's fifth science run and Virgo's first science run. We present noise spectral density curves for each of the four detectors that operated during these science runs which are representative of the typical performance achieved by the detectors for CBC searches. These spectra are intended for release to the public as a summary of detector performance for CBC searches during these science runs.Comment: 12 pages, 5 figure

    Measurement of the thermoelastic properties of crystalline Si fibres

    Get PDF
    In order to reduce the thermal noise in future interferometers for gravitational wave (GW) detectors, new suspension materials with low thermal noise are under investigation. Crystalline silicon seems to be a promising material mainly at low temperature. A new technology to produce crystalline silicon fibres has been realized. Measurements of mechanical and thermal properties of the fibres at room temperature have been performed. Preliminary measurements at low temperature are presented
    • 

    corecore