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Abstract

Rothe’s method for time discretization and Crouseix-Raviart nonconforming finite
element method to the spatial variable. After introducing error estimators, we prove
the equivalence between the error and its indicators.
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1 Introduction
Among commonly used methods for the numerical approach of problems which arise
in engineering, for example, Laplace equation and Maxwell system, the finite element
method is one of the most relied on methods because it is much more interested in the
analysis of the error committed between the exact solution and the approximate solution.
In many of these applications, adaptive techniques using a posteriori error estimators have
become an indispensable tool. These estimators allow to measure the quality of the com-
puted solution and provide information to control the mesh adaptation algorithm. There
are a lot of works on the a posteriori estimators for the elliptic partial differential equa-
tions and dynamic partial differential equations. Of these works, it is possible to refer to [1]
where the authors considered an elliptic second order boundary value problem approxi-
mated by a discontinuous Galerkin method. Time dependent Stokes equations in [2] and
second order wave equations in [3] are discretized by Euler’s implicit scheme in time and
standard finite elements in space. Using Rothe’s method in [4] and [5], the authors studied
the equation of telegraph and integrodifferential equation with integral conditions (resp.).

The purpose of this work is to combine Rothe’s method with nonconforming finite ele-
ment method of Crouseix-Raviart and to introduce a posteriori error estimators suitable
for the wave equation assumptions on the mesh. These indicators can give a good overview
of the local distribution of the error and a useful tool for mesh adaptation.

Let Q be a bounded open domain of R¥, d = 2 or 3 with Lipschitz boundary I that we
suppose to be polygonal (d = 2) or polyhedral (d = 3). We further assume that €2 is simply
connected and that I is connected. Let T be a fixed positive number,

3ttu - Au :f in Qx ]0, T[,

u(x,0)=up(x) inQatt=0, "
1
u=0 atI’'xILI=(0,T),

0:u(x,0) = u1(x) inQatt=0,
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where f € L2((0, T), L*(R2)), Uy € H}(S2) and U; € L*(R2). Under these conditions, problem
(1) is equivalent to

Buw,v) + (Vu, Vv) = (f,v), Vve Hy(Q)ae.te(0,T) 2)

has a unique weak solution C((0, T), H3(2)) N C*((0, T), L*(2)). If we put U = (Btuu) and
F= (ﬁ), then problem (1) can be rewritten as follows:

pU~— () )U=F inQx]0,TI,
U=0 onT xI, 3)
U(-,O): Uy

with 1o = ().

2 Time discretization using Rothe’s method
We divide the interval (0, T) into subintervals of length 7 = % and denote #/ = u(jt,x),
x € Q,j=1,...,n Successively, for j = 1,...,n, we solve the linear stationary boundary
value problem

ui—2uj’21+u1‘*2 _ Au] :f] in Q,

T
#=0 onT, (4)
u’(x,0) =uy in L,

where f/ = f(x,8) = f(x,j7). Setting u™'(x) = uo(x) — tuy(x), define s/ = @, 8% =

Su—su/! .
7,} =1,...,n.

This problem has a unique weak solution #/ € H}(€2) by the Lax-Milgram lemma whose
variational formulation is
(8%4,v) + (Vi/,Vv) = (f,v), VveHyQ). (5)

We define Rothe’s functions by a piecewise linear interpolation with respect to the time ¢,

W'(t,x) =+ (¢t - tj_l)&t’ forti . <t<t,j=1,...,n, (6)

Su(t,x) =8/ + (¢ — 1;_1)82uj fort <t=<t,j=1,...,n, 7)

the auxiliary functions are

—T o j f i—1» '1‘:1y~~~; )

i A (®)
ug ifte[-h,0],

_ j i Vi

St ) - Su %fte(t,_l,t,),] 1,...,n, ©)
u, ift€[-h,0].

3 Full discretization
We consider the following nonconforming finite element method to approximate our
problem. For all j = 1,...,n, we consider a triangulation Yj, made of triangles T if d = 2
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and of tetrahedra if d = 3 whose edges/faces are denoted by e. We assume that this trian-
gulation is regular in Ciarlet’s sense ([6], p.124), i.e. , 3o > 0 such that Z—; <o,¥T €Yy,

where /i is the diameter of T and p7 is the diameter of its largest inscribed bull. We de-
fine /1 = maxreny, hr. Let {;,',‘t be the set of interior edges/faces of Yj;, and {7 be the set of
a(T) M)

lel lel
its mean height. Problem (5) is approximated by the Crouseix-Raviart nonconforming fi-

edges/faces of the element T'. For an edge/face e € {1 N ¢k, we denote by /4, = %(

nite element space

Xﬁ, = {veLZ(Q);v\TePl,VTeTjh,/V\T:/V\K,Vee{TﬂgKﬁ;“ji,f‘t,
e e

T,I< S TjhifV\T: 0,Vee é‘T n F,TG Tjh}'
e

We consider the fully discrete scheme for problem (1): for each j=1,...,#, find u’h € Xﬁ,
such that

7?2 Z /;VMZVV;,:IZ /Szfjvh—/sz(bt;l—2u£l_l+u;,_2)vh. (10)

TE'Y}'h

We will use the following Crouseix-Raviart property:
/[uh]e = Or Ve e ;jhr Vuh S AX/(;,; (11)
e

where the jump of some function v across an edge/face at point x is defined by
limg_ o+ v(x + ane) — vix —an,) ifee {},‘;‘t,

[V(x)]e = : int

v(x) ife e g\,

1. denotes the outward normal vector for a boundary edge/face e and . = (=7, , 7, ) is the
tangent vector if n, = (1., e, )-

Since [v;] is linear on e, the condition fe[vh]e =0 is equivalent to the continuity of v, at
e barycenter.

For v, € X;L, we define its broken gradient Vv in Q by
(th)\T = V(V\T), VT € T/h.

We will need local subdomain, also called patches. For any T € Yy, let wr be the
union of all elements having a common edge/face with T'. Similarly let w, be the union
of all elements having e as an edge/face. Finally, let w, be the union of elements hav-
ing x as a node, and Wy (resp. W,) be the union of all triangles sharing a node with T
(resp. e).

Later on, we also need the standard P; conforming finite element spaces:

Vin={ve H(Q)WT € P,,VT € Ty},

Vi = Vi N Hy (K).
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We further need
Yj, = {v e L*(Q);W\T € H(Q),YT € Yj, /V\T = /V\I(,Ve eLrNix N,
T,K € Tjh},
Y) = {v e LX(Q)\T € H(Q),YT € Yp, /V\T = /V\K,Ve €LrNix N,
e e

T,I(ETjh,fV\T=0,V€€{THF,TE T]‘h}.

e

Page 4 of 11

We recall that for a node x € Nj,, we denote by A, the standard hat function such that

Ax(y) = 8xy, Yy € Ny, where Nj, is the set of nodes of Yj;, and Nji;;‘t denotes the set of interior

nodes of Y.

Definition 3.1 Forve Yy, and w e Y/%, Clément interpolation is defined as follows:

Iev=Y_ |wx|_1</ v),\x,
xENj;, Wx

Igw: Z |wx|_1(/ W>)\.x-
xeN}Et e

We define the gradient jump of u’h in normal and tangential direction as follows:

o [Vid,-n.] ifee o,
“r 1o if e € £\

If d = 2, then

et

oo [Vig, -] ifeeg,
-Vuy, -t ifeeg\gp".

If d = 3, then

oo [Vig, x ne] ifee i,
ot -Vuj, xn, ifee gh\;“jft.

Lemma 3.1 (7] Forallve Yy andw e Y/%, we have

lv—Icviir ShrlVavlle,, YT € Y,
v —Icvlle Sh [Vvliz, Ve g
|w-12w|, S hrllVawlls,, YT € Y,
[w—10w], S K1Vl Vee g,

|VIw] S IViwllsg, VT € T

(14)

(15)
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Next, we need the following Green’s formulas.
If D is open bounded of R? and v, w € H!(D), then

/churlw=/ vcurlw~n=/ Vv - tw, (21)
D aD aD
where ¢ is the unit tangent vector along 0D and curlw = (_351”‘;).

Similarly if D is open bounded of R3 and v € H}(D), w € H'(D)?, then we have

/churlw:/ vcurlw~n:/ (Vv xn) w. (22)
D aD aD

4 A posteriori analysis of time discretization
Foreachj,j=1,...,n, the refinement indicator is defined by

a2 iy 23
T

= eV - )+

e’ = u — u" indicate the error with respect to the discretization time.

Proposition 4.1 (Upper and lower bounds of the error in time) The following a posteriori
error estimate holds for all t;,1,j=1,...,n-1:

W

” (9u) (1) —

- Jutto) -1
)

]

j 1
Y Tl VUl + VU + Y T Y V(T - R |
k=0

m=1 m=1

J 1
+ Z T Z”SuWHI_k _ SZnJrl—k

m=1 k=0

, (24)

1
1= S @G o) — 59 + a0) ~ |+
k=0

tj+1
/ V(u—u")(s)ds

i

tj+1 1
+ / ' (Btu — (Su”)(s) ds| +t Z H V(uj+1_k — u’;l_k) ”
i k=0
1 .
D [ 7 (25)
k=0
Proof See [3]. O

5 A posteriori analysis of space discretization
The error indicator is defined by

1 .
w3 ke (Wl + W2l

ey

an:hT h

V_%—MT+W2

72
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the global error estimator 7/ is given by

W= |3 )

TeXj,

the higher order term depending on the datum f is defined as

, ) 1 ,
osc(f,wT)2 = Z hzTHf—fIiHZWT, where (fé)\T:: m/Tf,i,TeTjh.

TETjh
Our main result is the following theorem.

Theorem 5.1 (Upper bound) The following inequality holds:

n n
1"+ 22 19ae | < 1+ et P+ 22 3 ose(f,w)?

j1 j1

n
+ Z max{h]?, rz}(n/)z.
j=1

Page 6 of 11

To prove this theorem we need some lemmas. As our approximated scheme is a non-

conforming one, we need to use an appropriate Helmholtz decomposition of the error.

Lemma 5.1 (Helmholtz decomposition of the error) Let & = i/ — ”2’ then we have the

following decomposition of error €’:

Ve = Vo +curl ¥/

with x/ € H{(Q) and ¢/ € HY(R); furthermore, the following inequalities hold:

[Vl = [Vie

’

Jeurl /| < [[Vie|.
Proof We consider the following problem: find ¢/ € H}(£2), a solution of

div(V,é —= V@) =0 in,
¢=0 onT.

The weak formulation of that problem (29) is

/w/‘w:/ Ve Vv, Yve Hy(Q).
Q Q

(26)

(27)

(28)

(29)

(30)

As the vector field (V,¢/ — V¢/) is divergence-free in Q, i.e., div(V,e/ — V¢/) =0 in Q,
by Theorem 1.3.1 of [8] if d = 2 or Theorem 1.3.4 of [8] if d = 3, there exists x/ € H'(Q) if

d=2and x/ €e H(Q)? if d = 3 such that

curl ¥/ = V,é —= V.
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Estimate (27) directly follows by taking v = ¢/ in (30). To prove the inequality, we use
identity (26) and we get

/‘|curl)("|2 :/ curl x/(V4e - V). (31)
Q Q

Using Green’s formula and taking into account that ¢/ = 0 on T, we get

/‘curlxj|2=/curlxjvhe7.
Q Q

The Cauchy-Schwarz inequality implies
[curl /|| < || Ve | O

Lemma 5.2 The error satisfies the following identity:

4 e+ 201 _ o2
3 /vhdwh:/ T L Wnme V. (32)
T Q

T
TeXy,

Proof We only need to take v = v;, in (5), then taking the difference between (5) and (10)
we get the result. O

Lemma 5.3 Let ¢, € Vi, ifd =2 and ¢y, € (1//;,)3 if d = 3, then the error verifies

Z f Ve curl gy, = 0. (33)
T

Te Tjh

Proof We integrate by parts the expression [, V¢ curl ¢, using Green’s formula and tak-
ing into account that 2/ € H}(S2), then we use the property of finite elements of Crouseix-
Raviart ([ [u,] = 0) and get (33). O

Lemma 5.4 Let ¢ € HY(Q) if d =2 and ¢ € (HX(Q))? if d = 3, then we have

/ Ve curl = Z /]2,[ - . (34)
Q E

eE{jh

Proof The integration by parts and Green’s formula give us

/VheicurlgO:/Vujcurlgo— Z /Vuzcurlgoh:— Z/ Vu’}’ftTgo,
Q Q T aT

TET,';, TETjh
because #/ € H)(S2), and according to the definition of ]é,t we find (34). O

Lemma 5.5 Let ¢ € H)(Q), then € verifies

‘ W2 4 ,
> /TVhe’V<p= > A(f’—%)wZ//ém-w

TeXy, TeYy, ecgiy ” ¢
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Proof We integrate by parts the expresswn ZTGU J7 Vi€V with Au =0 on each ele-
ment T € Yj,, and from the definition of ]e » we conclude the proof. O

Remark 5.1 Lemmas 5.4, 5.5 imply that Vo € Hi(Q2) and x € H(Q) if d =2 and x €
(HY())? if d = 3, we have

Z /Vhe](V¢+cur1X)_ Z /( M)w

TeY; i TeY; jh

+Zf]én 0+ T X)-

eegy © ¢
Note that the local error estimator n’T is inspired by the latter identity.

Proof From what precedes (Lemmas 5.2 and 5.5), we can easily prove that

, R 7 v N A
T /QVhEIVW:T /(’—%)(W—Igw)

Y / 7~ 129) / (¢ 26+ 02)g. (35)

ey

From Lemmas 5.3 and 5.4 we get

/ Vi curl x/ = /]Et ~Icy)). (36)
Q

Ee;h

By using the Helmholtz decomposition of the error and identities (35)-(36), we obtain
] + 2> / Vel = 72 / ViEVI(E — ) + (<& + 267 620 — g~ 12(¢ — )
Q Q
oW 2 . , . .
2 f ( _ W—2W> (¢ - 129)) + (267 &2, &)
Q T

e 3 [Uhalel -8 sl - 1), @)

eegy* ¢

The Cauchy-Schwarz inequality and estimate (19) give

> [ 1) = Dl ~1e#'], <

e€Ljp ¢ ee{jh eE{/h

S Y ml Ve, Swvel. (38)

ey

en

Similarly, using the Cauchy-Schwarz inequality and estimate (17), we get

> [Jho = texd) Sl90: (39)
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By using the Helmholtz decomposition, Green’s formula and identity (36), we find

/ |curl Xj|2 = / (Vhe/ - thoj) curl Xj = / Vi€ curl Xj
Q Q Q

=Y [I ~1ex) S w190l (40)

ecty, V¢
The Cauchy-Schwarz inequality and estimate (17) imply
[Jew < w190
Knowing that
Jewr ] = ¥
we get
vl <.
and consequently

> f e = 1ex)) S (). (41)

ecgjy ¢

On the other hand, the Cauchy-Schwarz inequality and estimate (18) give

/(f’ MY-12) S 3 hely =AY,
S OSC(f,wT Vel (42)
Similarly, we have
(e s 261 =& =12y - &) | Sl -2 29 (E - )|
Proceeding as in (40) we can prove that
[v(e -l <,
which implies that
(=& +261 — 2,0 & —I0(¢) — €))| < hrnf|é 267 + 2. (43)

To estimate || V¢/||, we have

[Ve/ < [Va(e =€) + [Vad | < C(7)" + [ Vael]" (44)
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For the residual element, using the Cauchy-Schwarz inequality and estimation (18), we

j 2
- 22 i,

S |ve. (45)

get

> [(5- = e s Y

TeXy, TETjh

Using the e-inequality and replacing the previous estimates in (37), we find
; ; 1, 1, .
o1+ [ 19 < 1o o 31 Clmax{i, 22} ) o €7 sclf ).

Summing from j = 2 until # results in
R 2 2 2+ 2
e +Zf2fglvhd¢ S+ et + 2o max{ay, =2} ()
j=1 j=1

n
+ Z 2. osc(f iy )

j1

O

Theorem 5.2 (Lower bound of the error) [9,10] Foreach element T € Yy, j=2,...,n, the
following estimate holds:

u’,; - 21/,;1 + /2

nJTSh T2

i€l +hrlf £,
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