476 research outputs found

    Characterizing photonic crystal waveguides with an expanded k-space evanescent coupling technique

    Full text link
    We demonstrate a direct, single measurement technique for characterizing the dispersion of a photonic crystal waveguide (PCWG) using a tapered fiber evanescent coupling method. A highly curved fiber taper is used to probe the Fabry-Pérot spectrum of a closed PCWG over a broad k-space range, and from this measurement the dispersive properties of the waveguide can be found. Waveguide propagation losses can also be estimated from measurements of closed waveguides with different lengths. The validity of this method is demonstrated by comparing the results obtained on a 'W1' PCWG in chalcogenide glass with numerical simulation. © 2008 Optical Society of America

    Neandertal introgression partitions the genetic landscape of neuropsychiatric disorders and associated behavioral phenotypes

    Get PDF
    Despite advances in identifying the genetic basis of psychiatric and neurological disorders, fundamental questions about their evolutionary origins remain elusive. Here, introgressed variants from archaic humans such as Neandertals can serve as an intriguing research paradigm. We compared the number of associations for Neandertal variants to the number of associations of frequency-matched non-archaic variants with regard to human CNS disorders (neurological and psychiatric), nervous system drug prescriptions (as a proxy for disease), and related, non-disease phenotypes in the UK biobank (UKBB). While no enrichment for Neandertal genetic variants were observed in the UKBB for psychiatric or neurological disease categories, we found significant associations with certain behavioral phenotypes including pain, chronotype/sleep, smoking and alcohol consumption. In some instances, the enrichment signal was driven by Neandertal variants that represented the strongest association genome-wide. SNPs within a Neandertal haplotype that was associated with smoking in the UKBB could be replicated in four independent genomics datasets

    Random number generation from spontaneous Raman scattering

    Get PDF
    We investigate the generation of random numbers via the quantum process of spontaneous Raman scattering. Spontaneous Raman photons are produced by illuminating a highly nonlinear chalcogenide glass (As₂S₃) fiber with a CW laser at a power well below the stimulated Raman threshold. Single Raman photons are collected and separated into two discrete wavelength detuning bins of equal scattering probability. The sequence of photon detection clicks is converted into a random bit stream. Postprocessing is applied to remove detector bias, resulting in a final bit rate of ~650 kb/s. The collected random bit-sequences pass the NIST statistical test suite for one hundred 1 Mb samples, with the significance level set to α = 0.01. The fiber is stable, robust and the high nonlinearity (compared to silica) allows for a short fiber length and low pump power favourable for real world application.4 page(s

    Leptin Affects Life History Decisions in a Passerine Bird: A Field Experiment

    Get PDF
    BACKGROUND: Organisms face trade-offs regarding their life-history strategies, such as decisions of single or multiple broods within a year. In passerines displaying facultative multiple breeding, the probability of laying a second clutch is influenced by several life-history factors. However, information about the mechanistic background of these trade-offs is largely lacking. Leptin is a protein hormone produced by white fat cells, and acts as a signal between peripheral energy depots and the central nervous system. In addition, leptin affects cells at all levels of the reproductive axis and plays a critical role in regulating the allocation of metabolic energy to reproduction. As such, it is possible that leptin levels influence the decision of whether or not to invest time and energy into a second clutch. Accordingly, we expect a treatment with exogenous leptin to result in an increased number of second broods. METHODOLOGY/PRINCIPAL FINDINGS: At a later stage during the first brood, female great tits were treated either with long-term leptin-filled cholesterol pellets (the experimental birds) or with pellets containing only cholesterol (the control birds). We found that leptin-treated females were significantly more likely to have a second brood and that the earlier females were more likely to lay a second clutch than the late females. CONCLUSIONS/SIGNIFICANCE: As both timing of first brood and treatment with leptin were important in the decision of having multiple broods, the trade-offs involved in the breeding strategy most likely depend on multiple factors. Presumably leptin has evolved as a signal of energy supply status to regulate the release of reproductive hormones so that reproduction is coordinated with periods of sufficient nutrients. This study investigated the role of leptin as a mediator between energy resources and reproductive output, providing a fundamentally new insight into how trade-offs work on a functional basis

    Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use.

    Get PDF
    Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Discovery and fine-mapping of glycaemic and obesity-related trait loci using high-density imputation

    Get PDF
    Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency &ge;0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated
    corecore