117 research outputs found

    Word-frequency effect in lexical decision: finding a frequency-based component

    Get PDF
    Journal ArticleSubjects making lexical decisions are reliably faster in responding to high-frequency words than to low-frequency words. This is known as the word frequency effect. We wished to demonstrate that some portion of this effect was due to frequency differences between words rather than to other dimensions correlated with word frequency. Three groups of subjects (10 engineers, 10 nurses, and 10 law students) made lexical decisions about 720 items, half words and half nonwords, from six different categories (engineering, medical, low-frequency nontechnical, medium-frequency nontechnical, and two groups of high-frequency nontechnical). Results of t w o analyses of variance revealed a crossover interaction such that engineers were faster in responding to engineering words than to medical words, whereas nurses were faster in responding to medical words than to engineering words. The engineering and medical words were equally long and equally infrequent by standard word counts. We take this as support for a frequency-based component in the word frequency effect. The practical implications of this research for estimating the readability of technical text are discussed

    The BRICS in the Global Order: A New Political Agenda?

    Get PDF
    Regarding the BRICS (Brazil, Russia, India, China and South Africa) it’s important to analyze comparatively the new power cycle in order to understand not only the impact of the world crisis as well as the relationship between the official political discourses and the economic instability. Actually, the trade liberalization and economic interdependence accompanied with an uncertain international system are putting pressure to the BRICS with their own agendas for global order in seeking for a balance and also to regain a new political and economical dynamic for the promotion of new strategies

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?

    Get PDF
    Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, which was held in October 2016 in Leiden, The Netherlands. In this contribution, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profound knowledge of the dynamical properties of the quark-gluon plasma

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Comment letters to the National Commission on Commission on Fraudulent Financial Reporting, 1987 (Treadway Commission) Vol. 1

    Get PDF
    https://egrove.olemiss.edu/aicpa_sop/1661/thumbnail.jp

    A nonspatial methodology for the analysis of two-way proximity data incorporating the distance-density hypothesis

    Full text link
    This paper presents a nonspatial operationalization of the Krumhansl (1978, 1982) distancedensity model of similarity. This model assumes that the similarity between two objects i and j is a function of both the interpoint distance between i and j and the density of other stimulus points in the regions surrounding i and j . We review this conceptual model and associated empirical evidence for such a specification. A nonspatial, tree-fitting methodology is described which is sufficiently flexible to fit a number of competing hypotheses of similarity formation. A sequential, unconstrained minimization algorithm is technically presented together with various program options. Three applications are provided which demonstrate the flexibility of the methodology. Finally, extensions to spatial models, three-way analyses, and hybrid models are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45746/1/11336_2005_Article_BF02295285.pd
    corecore