51 research outputs found

    Electron localization and possible phase separation in the absence of a charge density wave in single-phase 1T-VS2_2

    Full text link
    We report on a systematic study of the structural, magnetic and transport properties of high-purity 1T-VS2_2 powder samples prepared under high pressure. The results differ notably from those previously obtained by de-intercalating Li from LiVS2_2. First, no Charge Density Wave (CDW) is found by transmission electron microscopy down to 94 K. Though, \textit{ab initio} phonon calculations unveil a latent CDW instability driven by an acoustic phonon softening at the wave vector qCDW{\bf q}_{CDW} \approx (0.21,0.21,0) previously reported in de-intercalated samples. A further indication of latent lattice instability is given by an anomalous expansion of the V-S bond distance at low temperature. Second, infrared optical absorption and electrical resistivity measurements give evidence of non metallic properties, consistent with the observation of no CDW phase. On the other hand, magnetic susceptibility and NMR data suggest the coexistence of localized moments with metallic carriers, in agreement with \textit{ab initio} band structure calculations. This discrepancy is reconciled by a picture of electron localization induced by disorder or electronic correlations leading to a phase separation of metallic and non-metallic domains in the nm scale. We conclude that 1T-VS2_2 is at the verge of a CDW transition and suggest that residual electronic doping in Li de-intercalated samples stabilizes a uniform CDW phase with metallic properties.Comment: 22 pages, 10 Figures. Full resolution pictures available at http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.23512

    A tale of two stories: astrocyte regulation of synaptic depression and facilitation

    Get PDF
    Short-term presynaptic plasticity designates variations of the amplitude of synaptic information transfer whereby the amount of neurotransmitter released upon presynaptic stimulation changes over seconds as a function of the neuronal firing activity. While a consensus has emerged that changes of the synapse strength are crucial to neuronal computations, their modes of expression in vivo remain unclear. Recent experimental studies have reported that glial cells, particularly astrocytes in the hippocampus, are able to modulate short-term plasticity but the underlying mechanism is poorly understood. Here, we investigate the characteristics of short-term plasticity modulation by astrocytes using a biophysically realistic computational model. Mean-field analysis of the model unravels that astrocytes may mediate counterintuitive effects. Depending on the expressed presynaptic signaling pathways, astrocytes may globally inhibit or potentiate the synapse: the amount of released neurotransmitter in the presence of the astrocyte is transiently smaller or larger than in its absence. But this global effect usually coexists with the opposite local effect on paired pulses: with release-decreasing astrocytes most paired pulses become facilitated, while paired-pulse depression becomes prominent under release-increasing astrocytes. Moreover, we show that the frequency of astrocytic intracellular Ca2+ oscillations controls the effects of the astrocyte on short-term synaptic plasticity. Our model explains several experimental observations yet unsolved, and uncovers astrocytic gliotransmission as a possible transient switch between short-term paired-pulse depression and facilitation. This possibility has deep implications on the processing of neuronal spikes and resulting information transfer at synapses.Comment: 93 pages, manuscript+supplementary text, 10 main figures, 11 supplementary figures, 1 tabl

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Roles of glial cells in synapse development

    Get PDF
    Brain function relies on communication among neurons via highly specialized contacts, the synapses, and synaptic dysfunction lies at the heart of age-, disease-, and injury-induced defects of the nervous system. For these reasons, the formation—and repair—of synaptic connections is a major focus of neuroscience research. In this review, I summarize recent evidence that synapse development is not a cell-autonomous process and that its distinct phases depend on assistance from the so-called glial cells. The results supporting this view concern synapses in the central nervous system as well as neuromuscular junctions and originate from experimental models ranging from cell cultures to living flies, worms, and mice. Peeking at the future, I will highlight recent technical advances that are likely to revolutionize our views on synapse–glia interactions in the developing, adult and diseased brain

    Low-Potential Sodium Insertion in a NASICON-Type Structure through the Ti(III)/Ti(II) Redox Couple

    No full text
    We report the direct synthesis of powder Na<sub>3</sub>Ti<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> together with its low-potential electrochemical performance and crystal structure elucidation for the reduced and oxidized phases. First-principles calculations at the density functional theory level have been performed to gain further insight into the electrochemistry of Ti­(IV)/Ti­(III) and Ti­(III)/Ti­(II) redox couples in these sodium superionic conductor (NASICON) compounds. Finally, we have validated the concept of full-titanium-based sodium ion cells through the assembly of symmetric cells involving Na<sub>3</sub>Ti<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> as both positive and negative electrode materials operating at an average potential of 1.7 V
    corecore