13 research outputs found

    Alternative final steps in berberine biosynthesis in Coptis japonica cell cultures

    Get PDF
    In Coptis japonica cell cultures an alternative pathway has been discovered which leads from (S)-tetrahydrocolumbamine via (S)-canadine to berberine. The two enzymes involved have been partially purified. (S)-Tetrahydrocolumbamine is stereospecifically transformed into (S)-canadine under formation of the methylenedioxy bridge in ring A. This new enzyme was named (S)-canadine synthase. (S)-Canadine in turn is stereospecifically dehydrogenated to berberine by an oxidase, (S)-canadine oxidase (COX), which was partially purified (25-fold). This enzyme has many physical properties in common with the already known (S)-tetrahydroprotoberberine oxidase from Berberis but grossly differs from the latter enzyme in its cofactor requirement (Fe) and its substrate specificity. Neither (S)-norreticuline nor (S)-scoulerine serves as substrate for the Coptis enzyme, while both substrates are readily oxidized by the Berberis enzyme. The four terminal enzymes catalyzing the pathway from (S)-reticuline to berberine are housed in Berberis as well as in Coptis in smooth vesicles with a density of =1.14 g/ml. These vesicles have been enriched and characterized by electron microscopy

    Single-Molecule Adhesion Forces and Attachment Lifetimes of Myosin-I Phosphoinositide Interactions

    No full text
    Phosphoinositides regulate the activities and localization of many cytoskeletal proteins involved in crucial biological processes, including membrane-cytoskeleton adhesion. Yet little is known about the mechanics of protein-phosphoinositide interactions, or about the membrane-attachment mechanics of any peripheral membrane proteins. Myosin-Ic (myo1c) is a molecular motor that links membranes to the cytoskeleton via phosphoinositide binding, so it is particularly important to understand the mechanics of its membrane attachment. We used optical tweezers to measure the strength and attachment lifetime of single myo1c molecules as they bind beads coated with a bilayer of 2% phosphatidylinositol 4,5-bisphosphate and 98% phosphatidylcholine. Adhesion forces measured under ramp-load ranged between 5.5 and 16 pN at loading rates between 250 and 1800 pN/s. Dissociation rates increased linearly with constant force (0.3–2.5 pN), with rates exceeding 360 s−1 at 2.5 pN. Attachment lifetimes calculated from adhesion force measurements were loading-rate-dependent, suggesting nonadiabatic behavior during pulling. The adhesion forces of myo1c with phosphoinositides are greater than the motors stall forces and are within twofold of the force required to extract a lipid molecule from the membrane. However, attachment durations are short-lived, suggesting that phosphoinositides alone do not provide the mechanical stability required to anchor myo1c to membranes during multiple ATPase cycles

    Chapter 12 Plant Biotechnology and the Production of Alkaloids: Prospects of Metabolic Engineering

    No full text

    Model membrane systems to reconstitute immune cell signaling

    No full text
    corecore