600 research outputs found

    Adaptive nonlinear interference suppressor for cognitive radio applications

    Get PDF
    To utilize the radio frequency spectrum efficiently a Cognitive Radio (CR) can operate as a secondary user in a frequency band which is licensed to a primary user. To this end, the CR must sense the spectrum continuously to find empty frequency channels for its transmission. The transmitted signal by the local transmitter of the CR, however, induces a strong local interference in the local receiver of the CR. Hence a half-duplex transceiver is used where the transmit and sense operations are done in separate time slots. The time-slotted operation though, reduces the throughput of the CR. This paper proposes application of an adaptive Nonlinear Interference Suppressor (NIS) to suppress this strong local interference to enable simultaneous transmit and sense. We present experimental results of a transceiver testbed that uses an implementation of the NIS, fabricated in 140 nm CMOS technology. These experiments show that the NIS can substantially suppress the local interference with low complexity and power consumption

    Periodic retinoic acid–STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis

    Get PDF
    Mammalian spermatogenesis—the transformation of stem cells into millions of haploid spermatozoa—is elaborately organized in time and space. We explored the underlying regulatory mechanisms by genetically and chemically perturbing spermatogenesis in vivo, focusing on spermatogonial differentiation, which begins a series of amplifying divisions, and meiotic initiation, which ends these divisions. We first found that, in mice lacking the retinoic acid (RA) target gene Stimulated by retinoic acid gene 8 (Stra8), undifferentiated spermatogonia accumulated in unusually high numbers as early as 10 d after birth, whereas differentiating spermatogonia were depleted. We thus conclude that Stra8, previously shown to be required for meiotic initiation, also promotes (but is not strictly required for) spermatogonial differentiation. Second, we found that injection of RA into wild-type adult males induced, independently, precocious spermatogonial differentiation and precocious meiotic initiation; thus, RA acts instructively on germ cells at both transitions. Third, the competencies of germ cells to undergo spermatogonial differentiation or meiotic initiation in response to RA were found to be distinct, periodic, and limited to particular seminiferous stages. Competencies for both transitions begin while RA levels are low, so that the germ cells respond as soon as RA levels rise. Together with other findings, our results demonstrate that periodic RA–STRA8 signaling intersects with periodic germ-cell competencies to regulate two distinct, cell-type-specific responses: spermatogonial differentiation and meiotic initiation. This simple mechanism, with one signal both starting and ending the amplifying divisions, contributes to the prodigious output of spermatozoa and to the elaborate organization of spermatogenesis.Howard Hughes Medical InstituteNational Institutes of Health (U.S.) (Pre-doctoral Training Grant T32GM007287

    Ten Misconceptions from the History of Analysis and Their Debunking

    Full text link
    The widespread idea that infinitesimals were "eliminated" by the "great triumvirate" of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum with a single number system. Such anachronistic distortions characterize the received interpretation of Stevin, Leibniz, d'Alembert, Cauchy, and others.Comment: 46 pages, 4 figures; Foundations of Science (2012). arXiv admin note: text overlap with arXiv:1108.2885 and arXiv:1110.545

    ĐœĐ”Ń‚ĐŸĐŽ Đ»Đ°Đ±ĐŸŃ€Đ°Ń‚ĐŸŃ€ĐœĐŸĐłĐŸ ĐŸĐżŃ€Đ”ĐŽĐ”Đ»Đ”ĐœĐžŃ ĐżĐ°Ń€Đ°ĐŒĐ”Ń‚Ń€ĐŸĐČ ŃƒŃŃ‚Ń€ĐŸĐčстĐČĐ° ĐłĐžĐŽŃ€ĐŸĐžĐŒĐżŃƒĐ»ŃŒŃĐœĐŸĐłĐŸ ĐČĐŸĐ·ĐŽĐ”ĐčстĐČоя

    Get PDF
    Đ”Đ°ĐœĐ° стаття ĐŸĐżĐžŃŃƒŃ” Đ»Đ°Đ±ĐŸŃ€Đ°Ń‚ĐŸŃ€ĐœĐžĐč ĐŒĐ”Ń‚ĐŸĐŽ, Ń‰ĐŸ ĐČĐžĐ·ĐœĐ°Ń‡Đ°Ń”: ĐŒĐ”Ń‚Ńƒ, ŃƒĐŒĐŸĐČĐž, ĐŸĐ±ŃŃĐł і ĐżĐŸŃ€ŃĐŽĐŸĐș ĐżŃ€ĐŸĐČĐ”ĐŽĐ”ĐœĐœŃ ĐŽĐŸŃĐ»Ń–ĐŽĐ¶Đ”ĐœŃŒ ĐżĐ°Ń€Đ°ĐŒĐ”Ń‚Ń€Ń–ĐČ ĐżŃ€ĐžŃŃ‚Ń€ĐŸŃŽ ĐłŃ–ĐŽŃ€ĐŸŃ–ĐŒĐżŃƒĐ»ŃŒŃĐœĐŸŃ— Юії.This article describes the laboratory method that defines: the purpose, conditions, effort and procedure of the researching the device settings of hydroimpulsive impact

    Advanced Virgo Plus: Future Perspectives

    Get PDF
    While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector's reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli

    The Advanced Virgo+ status

    Get PDF
    The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4). The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitivity band and the Frequency Dependent Squeezing (FDS) to reduce quantum noise at all frequencies. The main difference of the Advanced Virgo + detector with respect to the LIGO detectors is the presence of marginally stable recycling cavities, with respect to the stable recycling cavities present in the LIGO detectors, which increases the difficulties in controlling the interferometer in presence of defects (both thermal and cold defects). This work will focus on the interferometer commissioning, highlighting the control challenges to maintain the detector in the working point which maximizes the sensitivity and the duty cycle for scientific data taking

    Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light

    Get PDF
    Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer’s dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1  dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%–8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded

    Virgo Detector Characterization and Data Quality during the O3 run

    Full text link
    The Advanced Virgo detector has contributed with its data to the rapid growth of the number of detected gravitational-wave signals in the past few years, alongside the two LIGO instruments. First, during the last month of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary mergers GW170814 and GW170817) and then during the full Observation Run 3 (O3): an 11 months data taking period, between April 2019 and March 2020, that led to the addition of about 80 events to the catalog of transient gravitational-wave sources maintained by LIGO, Virgo and KAGRA. These discoveries and the manifold exploitation of the detected waveforms require an accurate characterization of the quality of the data, such as continuous study and monitoring of the detector noise. These activities, collectively named {\em detector characterization} or {\em DetChar}, span the whole workflow of the Virgo data, from the instrument front-end to the final analysis. They are described in details in the following article, with a focus on the associated tools, the results achieved by the Virgo DetChar group during the O3 run and the main prospects for future data-taking periods with an improved detector.Comment: 86 pages, 33 figures. This paper has been divided into two articles which supercede it and have been posted to arXiv on October 2022. Please use these new preprints as references: arXiv:2210.15634 (tools and methods) and arXiv:2210.15633 (results from the O3 run

    Virgo Detector Characterization and Data Quality: results from the O3 run

    Full text link
    The Advanced Virgo detector has contributed with its data to the rapid growth of the number of detected gravitational-wave (GW) signals in the past few years, alongside the two Advanced LIGO instruments. First during the last month of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary mergers GW170814 and GW170817), and then during the full Observation Run 3 (O3): an 11-months data taking period, between April 2019 and March 2020, that led to the addition of about 80 events to the catalog of transient GW sources maintained by LIGO, Virgo and now KAGRA. These discoveries and the manifold exploitation of the detected waveforms require an accurate characterization of the quality of the data, such as continuous study and monitoring of the detector noise sources. These activities, collectively named {\em detector characterization and data quality} or {\em DetChar}, span the whole workflow of the Virgo data, from the instrument front-end hardware to the final analyses. They are described in details in the following article, with a focus on the results achieved by the Virgo DetChar group during the O3 run. Concurrently, a companion article describes the tools that have been used by the Virgo DetChar group to perform this work.Comment: 57 pages, 18 figures. To be submitted to Class. and Quantum Grav. This is the "Results" part of preprint arXiv:2205.01555 [gr-qc] which has been split into two companion articles: one about the tools and methods, the other about the analyses of the O3 Virgo dat
    • 

    corecore