51 research outputs found

    The C-terminal helix of ribosomal P stalk recognizes a hydropobic groove of elongation factor 2 in a novel fashion

    Get PDF
    Sherpa Romeo green journal. Open access article. Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0) appliesArchaea and eukaryotes have ribosomal P stalks composed of anchor protein P0 and aP1 homodimers (archaea) or P1•P2 heterodimers (eukaryotes). These P stalks recruit translational GTPases to the GTPase-associated center in ribosomes to provide energy during translation. The C-terminus of the P stalk is known to selectively recognize GTPases. Here we investigated the interaction between the P stalk and elongation factor 2 by determining the structures of P y ro c o c c u s h o r i ko s h i i EF-2 ( Pho EF2) in the Apo-form, GDP-form, GMPPCP-form (GTPform), and GMPPCP-form bound with 11 C-terminal residues of P1 (P1C11). Helical structured P1C11 binds to a hydrophobic groove between domain G and subdomain G of Pho EF-2, where is completely differentfromthatofaEF-1 in terms of both position and sequence, implying that such interaction characteristic may be requested by how GTPases perform their functions on the ribosome. Combining Pho EF2 P1-binding assays with a structural comparison of current Pho EF-2 structures and molecular dynamics model of a P1C11-bound GDP form, the conformational changes of the P1C11-binding groove in each form suggest that in response to the translation process, the groove has three states: closed, open, and release for recruiting and releasing GTPasesYe

    HIV Delays IFN-α Production from Human Plasmacytoid Dendritic Cells and Is Associated with SYK Phosphorylation

    Get PDF
    Plasmacytoid dendritic cells (pDC) are the major producers of type I interferons (IFNs) in humans and rapidly produce IFN-α in response to virus exposure. Although HIV infection is associated with pDC activation, it is unclear why the innate immune response is unable to effectively control viral replication. We systematically compared the effect of HIV, Influenza, Sendai, and HSV-2 at similar target cell multiplicity of infection (M.O.I.) on human pDC function. We found that Influenza, Sendai, HSV-2 and imiquimod are able to rapidly induce IFN-α production within 4 hours to maximal levels, whereas HIV had a delayed induction that was maximal only after 24 hours. In addition, maximal IFN-α induction by HIV was at least 10 fold less than that of the other viruses in the panel. HIV also induced less TNF-α and MIP-1β but similar levels of IP-10 compared to other viruses, which was also mirrored by delayed upregulation of pDC activation markers CD83 and CD86. BDCA-2 has been identified as an inhibitory receptor on pDC, signaling through a pathway that involves SYK phosphorylation. We find that compared to Influenza, HIV induces the activation of the SYK pathway. Thus, HIV delays pDC IFN-α production and pDC activation via SYK phosphorylation, allowing establishment of viral populations

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    In vitro models for the study of osteoarthritis

    Get PDF
    AbstractOsteoarthritis (OA) is a prevalent disease of most mammalian species and is a significant cause of welfare and economic morbidity in affected individuals and populations. In vitro models of osteoarthritis are vital to advance research into the causes of the disease, and the subsequent design and testing of potential therapeutics. However, a plethora of in vitro models have been used by researchers but with no consensus on the most appropriate model. Models attempt to mimic factors and conditions which initiate OA, or dissect the pathways active in the disease. Underlying uncertainty as to the cause of OA and the different attributes of isolated cells and tissues used mean that similar models may produce differing results and can differ from the naturally occurring disease.This review article assesses a selection of the in vitro models currently used in OA research, and considers the merits of each. Particular focus is placed on the more prevalent cytokine stimulation and load-based models. A brief review of the mechanism of these models is given, with their relevance to the naturally occurring disease. Most in vitro models have used supraphysiological loads or cytokine concentrations (compared with the natural disease) in order to impart a timely response from the cells or tissue assessed. Whilst models inducing OA-like pathology with a single stimulus can answer important biological questions about the behaviour of cells and tissues, the development of combinatorial models encompassing different physiological and molecular aspects of the disease should more accurately reflect the pathogenesis of the naturally occurring disease

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    A network spatial analysis simulating response time to calls for service at variable staffing levels

    No full text
    In light of recent events, there has been a surge in discussions of defunding police. On one hand, policy that reduces police presence aims to reduce frequency of police violence. On the other hand, downsizing the police force triggers concerns of public safety and police response time. In this work, we use spatial analysis to examine the impact a reduced police force may have on response time. Modeling the transportation system of Chicago as a network, we simulate the response of police officers from stations to incidents. We then use this simulation to calculate the impacts of resource re-allocation from police to alternate responders. Using Chicago’s large, open-source police incident response database, we use our simulation to predict how the response time changes subject to various crime and policing scenarios. Our model suggests that the current response time distribution can be maintained with a 30–60% reduction in police staffing levels if some incidents are re-allocated to alternate responders

    Monoenergetic 290 MeV/n carbon-ion beam biological lethal dose distribution surrounding the Bragg peak

    No full text
    The sharp high dose Bragg peak of a carbon-ion beam helps it to deliver the highest dosage to the malignant cells while leaving the normal cells relatively unharmed. However, the precise range in which it distributes dosages that significantly induce cell death or genotoxicity surrounding its Bragg peak remains unclear. To evaluate biological effects of carbon-ion radiation through entrance to post Bragg peak in a single biological system, CHO and xrs5 cells were cultured in T-175 cell culture flasks and irradiated with 290 MeV/n monoenergetic carbon-ions with initial dosages upon entrance to the flask of 1, 2, or 3 Gy for cell survival assays or 1 Gy for cytokinesis block micronuclei assays. Under all initial dosages, the biological Bragg peak and the highest micronuclei formation was observed at the depth of 14.5 cm. Moreover, as the initial dosage increased the range displaying a significant decrease in survival fraction increased as well (P < 0.0001). Intriguingly from 1 Gy to 3 Gy, we observed a significant increase in reappearance of colony formation depth (P < 0.05), possibly indicating the nuclear fragmentation lethality potential of the carbon-ion. By means of our single system approach, we can achieve a more comprehensive understanding of biological effects surrounding of carbon-ions Bragg peak
    corecore