129 research outputs found

    Artifact/Ideas and Parenting for Social Justice

    Get PDF

    Early Geometrical Thinking in the Environment of Patterns, Mosaics and Isometries

    Get PDF
    This book discusses the learning and teaching of geometry, with a special focus on kindergarten and primary education. It examines important new trends and developments in research and practice, and emphasizes theoretical, empirical and developmental issues. Further, it discusses various topics, including curriculum studies and implementation, spatial abilities and geometric reasoning, as well as the psychological roots of geometrical thinking and teacher preparation in geometry education. It considers these issues from historical, epistemological, cognitive semiotic and educational points of view in the context of students' difficulties and the design of teaching and curricula

    The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance

    Full text link
    The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 microns. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1, 6.4, 6.5 and 12.0 arc-seconds at 3.4, 4.6, 12 and 22 microns, and the astrometric precision for high SNR sources is better than 0.15 arc-seconds.Comment: 22 pages with 19 included figures. Updated to better match the accepted version in the A

    An electrogenic redox loop in sulfate reduction reveals a likely widespread mechanism of energy conservation

    Get PDF
    The bioenergetics of anaerobic metabolism frequently relies on redox loops performed by membrane complexes with substrate- and quinone-binding sites on opposite sides of the membrane. However, in sulfate respiration (a key process in the biogeochemical sulfur cycle), the substrate- and quinone-binding sites of the QrcABCD complex are periplasmic, and their role in energy conservation has not been elucidated. Here we show that the QrcABCD complex of Desulfovibrio vulgaris is electrogenic, as protons and electrons required for quinone reduction are extracted from opposite sides of the membrane, with a H+/e− ratio of 1. Although the complex does not act as a H+-pump, QrcD may include a conserved proton channel leading from the N-side to the P-side menaquinone pocket. Our work provides evidence of how energy is conserved during dissimilatory sulfate reduction, and suggests mechanisms behind the functions of related bacterial respiratory complexes in other bioenergetic contexts

    A far-ultraviolet-driven photoevaporation flow observed in a protoplanetary disk.

    Get PDF
    Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula. Emission lines are detected from the PDR; modeling their kinematics and excitation allowed us to constrain the physical conditions within the gas. We quantified the mass-loss rate induced by the FUV irradiation and found that it is sufficient to remove gas from the disk in less than a million years. This is rapid enough to affect giant planet formation in the disk

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Get PDF

    Overview of the JET ITER-like wall divertor

    Get PDF
    corecore