97 research outputs found

    Graviton production in anti-de Sitter braneworld cosmology: A fully consistent treatment of the boundary condition

    Full text link
    In recent work by two of us, [Durrer & Ruser, PRL 99, 071601 (2007); Ruser & Durrer PRD 76, 104014 (2007)], graviton production due to a moving spacetime boundary (braneworld) in a five dimensional bulk has been considered. In the same way as the presence of a conducting plate modifies the electromagnetic vacuum, the presence of a brane modifies the graviton vacuum. As the brane moves, the time dependence of the vacuum leads to particle creation via the so called 'dynamical Casimir effect'. In our previous work a term in the boundary condition which is linear in the brane velocity has been neglected. In this work we develop a new approach which overcomes this approximation. We show that the previous results are not modified if the brane velocity is low.Comment: 13 pages, 6 figures, added a clarifying paragraph about the setup, the brane motion adapted w.r.t the version published in PR

    Gauge invariant Boltzmann equation and the fluid limit

    Full text link
    This article investigates the collisionless Boltzmann equation up to second order in the cosmological perturbations. It describes the gauge dependence of the distribution function and the construction of a gauge invariant distribution function and brightness, and then derives the gauge invariant fluid limit.Comment: 36 page

    A fully covariant description of CMB anisotropies

    Get PDF
    Starting from the exact non-linear description of matter and radiation, a fully covariant and gauge-invariant formula for the observed temperature anisotropy of the cosmic microwave background (CBR) radiation, expressed in terms of the electric (EabE_{ab}) and magnetic (HabH_{ab}) parts of the Weyl tensor, is obtained by integrating photon geodesics from last scattering to the point of observation today. This improves and extends earlier work by Russ et al where a similar formula was obtained by taking first order variations of the redshift. In the case of scalar (density) perturbations, EabE_{ab} is related to the harmonic components of the gravitational potential Ίk\Phi_k and the usual dominant Sachs-Wolfe contribution ÎŽTR/TˉR∌Ίk\delta T_R/\bar{T}_R\sim\Phi_k to the temperature anisotropy is recovered, together with contributions due to the time variation of the potential (Rees-Sciama effect), entropy and velocity perturbations at last scattering and a pressure suppression term important in low density universes. We also explicitly demonstrate the validity of assuming that the perturbations are adiabatic at decoupling and show that if the surface of last scattering is correctly placed and the background universe model is taken to be a flat dust dominated Friedmann-Robertson-Walker model (FRW), then the large scale temperature anisotropy can be interpreted as being due to the motion of the matter relative to the surface of constant temperature which defines the surface of last scattering on those scales.Comment: 18 pages LaTeX, 1 figure. Submitted to Classical and Quantum Gravity. Also available at http://shiva.mth.uct.ac.za/preprints/9705.htm

    Cold, warm, and composite (cool) cosmic string models

    Get PDF
    The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension TT below the constant value T=m2T=m^2 say that characterizes the simple, longitudinally Lorentz invariant, Goto Nambu string model in terms of a fixed mass scale mm whose magnitude depends on that of the Higgs field responsible for the existence of the string. Such a reduction occurs in the standard "hot" cosmic string model in which the effect of thermal perturbations of a simple Goto Nambu model is expressed by the formula T2=m2(m2−2πΘ2/3)T^2=m^2(m^2-2\pi\Theta^2/3), where Θ\Theta is the string temperature. A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in "cold" conducting cosmic string models where the role of the temperature is played by an effective chemical potential ÎŒ\mu that is constructed as the magnitude of the phase ϕ\phi of a bosonic condensate of the kind whose existence was first proposed by Witten. The present article describes the construction and essential mechanical properties of a category of "warm" cosmic string models that are intermediate between these "hot" and "cold" extremes. These "warm" models are the string analogues of the standard Landau model for a 2-constituent finite temperature superfluid, and as such involve two independent currents interpretable as that of the entropy on one hand and that of the bosonic condensate on the other. It is surmised that the stationary (in particular ring) equilibrium states of such "warm" cosmic strings may be of cosmological significance.Comment: 31 pages, Tex preprint version of manuscript subsequently published (with editorial modifications) in Nuclear Physics

    Identification of perturbation modes and controversies in ekpyrotic perturbations

    Get PDF
    If the linear perturbation theory is valid through the bounce, the surviving fluctuations from the ekpyrotic scenario (cyclic one as well) should have very blue spectra with suppressed amplitude for the scalar-type structure. We derive the same (and consistent) result using the curvature perturbation in the uniform-field (comoving) gauge and in the zero-shear gauge. Previously, Khoury et al. interpreted results from the latter gauge condition incorrectly and claimed the scale-invariant spectrum, thus generating controversy in the literature. We also correct similar errors in the literature based on wrong mode identification and joining condition. No joining condition is needed for the derivation.Comment: 5 pages, substantially revised, match with PLB versio

    Adiabatic perturbations in pre big bang models: matching conditions and scale invariance

    Get PDF
    At low energy, the four-dimensional effective action of the ekpyrotic model of the universe is equivalent to a slightly modified version of the pre big bang model. We discuss cosmological perturbations in these models. In particular we address the issue of matching the perturbations from a collapsing to an expanding phase in full generality. We show that, generically, one obtains n=0n=0 for the spectrum of scalar perturbations in the original pre big model (with vanishing potential). When an exponential potential for the dilaton is included, a scale invariant spectrum (n=1n=1) of adiabatic scalar perturbations is produced under very generic matching conditions, both in a modified pre big bang and ekpyrotic scenario. We also derive general results valid for power law scale factors matched to a radiation dominated era.Comment: 11 pages, 1 figure, revised version with small corrections to match version in print. Results and conclusions unchange

    The scalar bi-spectrum during preheating in single field inflationary models

    Full text link
    In single field inflationary models, preheating refers to the phase that immediately follows inflation, but precedes the epoch of reheating. During this phase, the inflaton typically oscillates at the bottom of its potential and gradually transfers its energy to radiation. At the same time, the amplitude of the fields coupled to the inflaton may undergo parametric resonance and, as a consequence, explosive particle production can take place. A priori, these phenomena could lead to an amplification of the super-Hubble scale curvature perturbations which, in turn, would modify the standard inflationary predictions. However, remarkably, it has been shown that, although the Mukhanov-Sasaki variable does undergo narrow parametric instability during preheating, the amplitude of the corresponding super-Hubble curvature perturbations remain constant. Therefore, in single field models, metric preheating does not affect the power spectrum of the large scale perturbations. In this article, we investigate the corresponding effect on the scalar bi-spectrum. Using the Maldacena's formalism, we analytically show that, for modes of cosmological interest, the contributions to the scalar bi-spectrum as the curvature perturbations evolve on super-Hubble scales during preheating is completely negligible. Specifically, we illustrate that, certain terms in the third order action governing the curvature perturbations which may naively be expected to contribute significantly are exactly canceled by other contributions to the bi-spectrum. We corroborate selected analytical results by numerical investigations. We conclude with a brief discussion of the results we have obtained.Comment: v1: 15 pages, 4 figures; v2: 15 pages, 4 figures, discussion and references added, to appear in Phys. Rev.

    Assisted Contraction

    Full text link
    We consider the dynamics of a contracting universe ruled by two minimally coupled scalar fields with general exponential potentials. This model describes string-inspired scenarios in the Einstein frame. Both background and perturbations can be solved analytically in this model. Curvature perturbations are generated with a scale invariant spectrum only for a dust-like collapse, as happens for a single field model with an exponential potential. We find the conditions for which a scale invariant spectrum for isocurvature perturbation is generated.Comment: 13 pages, 3 figures, revised version, conclusions unchange

    Parametric amplification of metric fluctuations through a bouncing phase

    Full text link
    We clarify the properties of the behavior of classical cosmological perturbations when the Universe experiences a bounce. This is done in the simplest possible case for which gravity is described by general relativity and the matter content has a single component, namely a scalar field in a closed geometry. We show in particular that the spectrum of scalar perturbations can be affected by the bounce in a way that may depend on the wave number, even in the large scale limit. This may have important implications for string motivated models of the early Universe.Comment: 17 pages, 12 figures, LaTeX-ReVTeX format, version to match Phys. Rev.
    • 

    corecore