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Abstract. If our Universe is a 3+1 brane in a warped 4+1 dimensional bulk so that its expansion
can be understood as the motion of the brane in the bulk, the time dependence of the boundary
conditions for arbitrary bulk fields can lead to particle creation via the dynamical Casimir effect.
In this talk I report results for the simplest such scenario,when the only particle in the bulk is the
graviton and the bulk is the 5 dimensional anti-de Sitter spacetime.
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1. INTRODUCTION

The idea that our Universe be a 3+ 1 dimensional membrane in a higher dimensional
’bulk’ spacetime has opened new exciting prospects for cosmology, for reviews see [1,
2]. In the simplest braneworlds motivated by string theory,the standard model particles
are confined to the brane and only the graviton can propagate in the bulk. Of particular
interest is the Randall-Sundrum (RS) model [3, 4], where thebulk is 5-dimensional
anti-de Sitter space, AdS5. If the so called RS fine tuning condition is satisfied, it can be
shown that gravity on the brane ’looks 4-dimensional’ at lowenergies.

Within this model, cosmological evolution can be interpreted as the motion of the
physical brane, i.e. our Universe, through the 5d bulk. Sucha time-dependent boundary
does in general lead to particle production via the dynamical Casimir effect [5].

Of course one can always choose coordinates with respect to which the brane is
at rest, e.g. Gaussian normal coordinates. But then usually(except in the case of de
Sitter expansion on the brane [6]), the perturbation equation describing the evolution of
gravitons is not separable and can be treated only with numerical simulations [7, 8, 9].
Furthermore, in a time-dependent bulk a mode decompositionis in general ambiguous
and one cannot split the field in a zero mode and Kaluza-Klein (KK) modes in a unique
way.

Based on the picture of a moving brane in AdS5, we have studied graviton production
in an ekpyrotic type scenario [10] where our Universe first approaches a second static
brane. After a ’collision’ the physical brane reverses direction and moves away from
the static brane, see Fig. 1. For an observer on the brane, thefirst phase corresponds
to a contracting Universe and the collision represents the ’Big Bang’ after which the
Universe starts expanding.

Here I report on the results which we have obtained in our previous papers [11, 12, 13].
We have found that the energy density of KK gravitons in AdS5 scales like stiff matter,



FIGURE 1. Two branes in an AdS5 spacetime. The physical brane is to the left. While it is approaching
the static brane its scale factor is decreasing, the Universe is contracting, and when it moves away from
the static brane the Universe is expanding. The AdS curvature radiusL (dashed line) and value of the scale
factor of the brane metric as function of the extra dimensiony (light (blue) line) are also indicated.

ρKK ∝ a−6, herea denotes the scale factor defined in Eq. (2). Therefore, KK gravitons
in AdS5 cannot represent the dark matter in the Universe. This finding is in contrast with
the results of Ref. [14] and we comment on this below. We have also found that in the
early Universe the back reaction from KK gravitons on the bulk geometry is likely to be
important.

Finally, we have derived a limit for the maximal brane velocity, the bounce velocity,
vb

<∼0.2 in order not to over-produce zero-mode (i.e. 4d) gravitons, the energy density
of which is constrained by the nucleosynthesis bound. We have calculated the spectra of
both, the zero-mode and the KK gravitons. In Refs. [11, 12] wehave, however, neglected
a term linear in the brane velocityv in the boundary conditions. In our latest work,
Ref. [13] we derived a method which includes this term and allows to treat the problem
without any low velocity approximation. We have shown that the low velocity results
previously obtained are not modified.

The remainder of this paper is organized as follows. In the next section we present
the basic equations for the evolution of tensor perturbations (gravitons) and we explain
why it is not straight forward to include the velocity term ofthe boundary condition. In
Section 3 we quantize the system. In Section 4 we discuss our results and in Section 5
we conclude.



2. A MOVING BRANE IN AdS5

2.1. The background

In Poincaré coordinates(xA) = (t,x,y) with x = (x1,x2,x3) andA = 0, ...,4, the AdS5
(bulk) metric is given by

ds2 = gABdxAdxB =
L2

y2

[

−dt2+δi j dxidxj +dy2] , (1)

where i, j = 1,2,3 and L is the AdS5 curvature radius which is related to the bulk
cosmological constant by the 5d Einstein equation,−Λ = 6/L2. The physical brane
representing our (spatially flat) Universe is located at some time dependent position
y = yb(t) in the bulk, and the metric induced on the brane is the Friedman-Robertson-
Walker metric,

ds2 = a2(η)
[

−dη2 +δi j dxidxj] , (2)

with scale factora(η) which is given by the brane position,

a(η) =
L

yb(t)
. (3)

The conformal timeη of an observer on the brane, is related to the bulk timet via

dη =
√

1−v2dt ≡ γ−1dt . (4)

Here we have introduced the brane velocity

v≡ dyb

dt
= − LH√

1+L2H2
and γ =

1√
1−v2

. (5)

H is the usual Hubble parameter,

H ≡ 1
a2

∂a
∂η

≡ a−1
H = −L−1γv . (6)

The brane dynamics, as a result of the second junction condition, is determined by the
modified Friedmann equation [1]

H2 =
κ4ρ
3

(

1+
ρ

2σ

)

(7)

whereσ is the brane tension,ρ the energy density on the brane, and we assume the RS
fine tuning condition [3]

κ2
5σ2

12
=

3
L2 , and κ4 ≡ 8πG4 ≡

κ2
5σ
6

. (8)



We define the string and Planck scales by

κ5 =
1

M3
5

= L3
s , κ4 =

1

M2
Pl

= L2
Pl . (9)

Note that the RS fine-tuning condition is equivalent to

κ5 = κ4L or
Ls

L
=

L2
Pl

L2
s
. (10)

2.2. Tensor perturbations

We now consider 3d tensor perturbationshi j (t,x,y) of the spatial three-dimensional
geometry on this background. The perturbed bulk metric reads

ds2 =
L2

y2

[

−dt2+(δi j +2hi j )dxidxj +dy2] . (11)

Tensor modes satisfy the traceless and transverse conditions,hi
i = ∂ihi

j = 0. These con-
ditions imply thathi j has only two independent degrees of freedom, the two polarization
states• = ×,+. We decomposehi j into spatial Fourier modes,

hi j (t,x,y) =
∫

d3k

(2π)3/2 ∑
•=+,×

eik·xe•
i j (k)h•(t,y;k) , (12)

wheree•
i j (k) are unitary constant transverse-traceless polarization tensors which form

a basis of the two polarization states• = ×,+. Since we assume parity symmetry, we
shall neglect in the following the distinction between the two graviton polarizations and
consider only one of them. We then have to multiply the final results for e.g. particle
number or energy density by a factor of two to account for bothpolarizations.

The perturbed Einstein equations and the second junction condition lead to the fol-
lowing boundary value problem

[

∂ 2
t +k2−∂ 2

y +
3
y

∂y

]

h(t,y;k) = 0 in the bulk, k2 = |k|2 , (13)

and
γ (v∂t +∂y)h

∣

∣

yb(t)
= 0 on the brane. (14)

We introduce also a second, static brane at positionys, which requires the additional
boundary condition

∂yh
∣

∣

ys
= 0 on the static brane. (15)

Eq. (13) is the Klein-Gordon equation for a minimally coupled massless mode in
AdS5 , i.e. the operator acting onh is just the Klein-Gordon operator

=
1√−g

∂A

[√−ggAB∂B

]

. (16)



Equation (14) is the time-dependent boundary condition (BC) coming from the fact
that the moving brane acts like a "moving mirror" for the gravitational perturbations.
Only in the rest-frame of the brane do we have pure Neumann BC.In a generic frame
we have the Lorentz transformed BC which contains a velocitytermv∂t .

We assume that the brane is filled with a perfect fluid such thatthere are no anisotropic
stress perturbations in the brane energy momentum tensor, i.e. there is no coupling of
gravitational waves to matter. If this were the case, the r.h.s. of Eq. (14) would not be
zero but a term couplinghi j to the matter on the brane, see Eq. (2.25) of [12].

For the tensor perturbations the gravitational action up tosecond order in the pertur-
bations reads

Sh = 4
L3

2κ5

∫

dt
∫

d3k
∫ ys

yb(t)

dy
y3

[

|∂th|2−|∂yh|2−k2|h|2
]

. (17)

One factor of two in the action is due toZ2 symmetry while a second factor comes from
the two polarizations.

2.3. Dynamical Casimir effect approach

The wave equation (13) itself has no time dependence and simply describes the
propagation of free modes. It is the time dependence of the BC(14) that sources the
non-trivial time-evolution of the perturbations. As it is well known, such a system of a
wave equation and time-dependent BC lead, within a quantum mechanical formulation,
to particle production from vacuum fluctuations. In the context of the photon field
perturbed by a moving mirror this goes under the name “dynamical Casimir effect” [5].

In [12] we have extended a formalism which has been successfully employed for the
numerical investigation of photon production in dynamicalcavities [15, 16, 17] to the
RS braneworld scenario. We have studied graviton production by a moving brane, which
we call dynamical Casimir effect for gravitons, for a bouncing braneworld scenario.

However, in order to solve the problem, we have neglected thevelocity term in
Eq. (14). The ansatz

h = ∑
α

aα(t)e−iωαtφα(t,y)+h.c. , ω2
α = k2+mα(t)2

then leads to a Sturm–Liouville problem for the instantaneous eigenfunctionsφα(t,y)
which satisfy

(

−∂ 2
y +

3
y

∂y

)

φα = m2
αφα . (18)

The solutions of (18) are

φ0(t) =
ysyb(t)

√

y2
s−y2

b(t)
, (19)

φn(t,y) = Nn(t)y
2C2(mn(t),yb(t),y) with

Cν(m,x,y) = Y1(mx)Jν(my)−J1(mx)Yν(my) . (20)



The functionφ0 is the zero mode which corresponds to the ordinary(3+1)d graviton on
the brane while theφn are the KK modes. The massesmn are determined by the boundary
condition at the static brane, see, e.g. [18] for more details. Sinceφα satisfies Neumann
boundary conditions, we know that the solutions(φα)α form a complete orthonormal
set of functions on the interval[yb(t),ys] normalized by the scalar product

(

φα ,φβ
)

≡ 2
∫ ys

yb(t)

dy
y3 φαφβ = δαβ .

Therefore, any general solution which satisfies Neumann BC can be expanded in these
instantaneous eigenfunctions. If we add the termv∂t to the boundary condition this
feature is lost, and we can no longer expect to find a complete set of instantaneous
eigenfunctions.

However, since the entire effect disappears when the velocity tends to zero, neglecting
a term which is first order in the velocity seems not to be consistent. This problem led us
to search for another approach which is discussed in Ref. [13] where we transform to a
coordinate system where the velocity term disappears identically. There also show that
for low velocitiesv< 0.3, say the corrections obtained with this consistent treatment are
below a few percent. We therefore ignore it in the following.

3. QUANTIZATION

3.1. Equation of motion

The gravitational wave amplitudeh(t,y;k) subject to Neumann boundary conditions
can be expanded as

h(t,y;k) =

√

κ5

L3

∞

∑
α=0

qα,k(t)φα(t,y) . (21)

The coefficientsqα,k(t) are canonical variables describing the time evolution of the
perturbations and the factor

√

κ5/L3 has been introduced in order to render theqα,k’s
canonically normalized. Forh(t,y,x) to be real, we have to impose the following reality
condition on the canonical variables,

q∗α,k = qα,−k . (22)

One could now insert the expansion (21) into the wave equation (13), multiply it
by φβ (t,y) and integrate out they−dependence by using the orthonormality to derive
the equations of motion for the variablesqα,k. However, as we explain in Refs. [12,
13], a Neumann boundary condition at a moving brane is not compatible with a free
wave equation. The only consistent way to implement Neumannboundary conditions is
therefore to consider the action (17) of the perturbations as the starting point to derive
the equations of motion forqα,k. Inserting (21) into (17) leads to the action

S =
1
2

∫

dt
∫

d3k
{

∑
α

[

|q̇α,k|2−ω2
α,k|qα,k|2

]

+



∑
αβ

[

Mαβ
(

qα,kq̇β ,−k +qα,−kq̇β ,k
)

+Nαβ qα,kqβ ,−k
]

}

. (23)

We have introduced the time-dependent frequency of a graviton mode

ω2
α,k =

√

k2 +m2
α , (24)

and the time-dependent coupling matrices

Mαβ = (∂tφα ,φβ ) , (25)

Nαβ = (∂tφα ,∂tφβ ) = ∑
γ

MαγMβγ = (MMT)αβ , (26)

which are given explicitely in Ref. [12] (see also [18]). Theequations of motion for the
canonical variables are the Euler–Lagrange equations fromthe action (23),

q̈α,k +ω2
α,kqα,k +∑

β

[

Mβα −Mαβ
]

q̇β ,k +∑
β

[

Ṁαβ −Nαβ
]

qβ ,k = 0 . (27)

The motion of the brane through the bulk, i.e. the expansion of the universe, is en-
coded in the time-dependent coupling matricesMαβ andNαβ . These mode couplings
are caused by the time-dependent boundary condition∂yh•(t,y)|yb = 0 which forces the
eigenfunctionsφα(t,y) to be explicitly time-dependent. In addition, the frequency of
the KK modesωα,k is also time-dependent since the distance between the two branes
changes when the brane is in motion. Both time dependencies can lead to the amplifica-
tion of tensor perturbations and, within a quantum treatment which is developed below,
to graviton production from vacuum.

Because of translational invariance with respect to the directions parallel to the brane,
modes with differentk do not couple in (27). The three-momentumk enters the equation
of motion for the perturbation only via the frequencyωα,k. Equation (27) is similar to
the equation describing the time evolution of electromagnetic field modes within a three-
dimensional dynamical cavity [16] and may effectively be described by a massive scalar
field on a time-dependent interval [17]. For the electromagnetic field, the dynamics of
the cavity, or more precisely the motion of one of its walls, leads to photon creation
from vacuum fluctuations. This phenomenon is usually referred to as dynamical Casimir
effect. Inspired by this, we call the production of gravitons by the moving brane the
dynamical Casimir effect for gravitons.

3.2. Quantization

Asymptotically, i.e. fort → ±∞, the physical brane approaches the Cauchy horizon
(yb → 0), moving very slowly. Then, the coupling matrices vanish and the KK masses
become constant,

lim
t→±∞

Mαβ (t) = 0 , lim
t→±∞

mα(t) = const. ∀α,β . (28)



In this limit, the system (27) reduces to an infinite set of uncoupled harmonic oscillators.
This allows to introduce an unambiguous and meaningful particle concept, i.e. the notion
of (massive) gravitons.

Canonical quantization of the gravity wave amplitude is performed by replacing the
canonical variablesqα,k by the corresponding operators ˆqα,k

ĥ(t,y;k) =

√

κ5

L3 ∑
α

q̂α,k(t)φα(t,y) . (29)

Adopting the Heisenberg picture to describe the quantum time evolution, it follows that
q̂α,k satisfies the same equation (27) as the canonical variableqα,k.

Under the assumptions outlined above, the operator ˆqα,k can be written for very early
times,t < tin, as

q̂α,k(t < tin) =
1

√

2ω in
α,k

[

âin
α,ke−i ω in

α ,k t + âin†
α,−kei ω in

α ,k t
]

, (30)

where we have introduced the reference frequency

ω in
α,k ≡ ωα,k(t < tin) . (31)

This expansion ensures that Eq. (22) is satisfied. The set of annihilation and creation
operators{âin

α,k, âin†
α,k} corresponding to the notion of gravitons fort < tin is subject to

the usual commutation relations
[

âin
α,k, â

in†
α ′,k′

]

= δαα ′δ (3)(k−k′) , (32)
[

âin
α,k, â

in
α ′,k′

]

=
[

âin†
α,k, â

in†
α ′,k′

]

= 0. (33)

For very late times,t > tout, i.e. after the motion of the brane has ceased, the operator
q̂α,k can be expanded in a similar manner,

q̂α,k(t > tout) =
1

√

2ωout
α,k

[

âout
α,ke−i ωout

α ,k t + âout†
α,−kei ωout

α ,k t
]

(34)

with final state frequency
ωout

α,k ≡ ωα,k(t > tout) . (35)

The annihilation and creation operators{âout
α,k, â

out†
α,k } correspond to a meaningful defi-

nition of final state gravitons (they are associated with positive and negative frequency
solutions fort ≥ tout) and satisfy the same commutation relations as the initial state op-
erators1.

1 Of course the brane never really stops moving, but before a certain timetin and after a certain timetout
the motion is so slow that no particle production takes place. We have chosen these times sufficiently early
(rsp. late) so that the numerical results are independent oftheir choice.



Initial |0, in〉 ≡ |0, t < tin〉 and final|0,out〉 ≡ |0, t > tout〉 vacuum states are uniquely
defined via2

âin
α,k|0, in〉 = 0 , âout

α,k|0,out〉 = 0 , ∀ α, k . (36)

The operators counting the number of particles defined with respect to the initial and
final vacuum state, respectively, are

N̂in
α,k = âin†

α,kâin
α,k , N̂out

α,k = âout†
α,k âout

α,k . (37)

The number of gravitons created during the motion of the brane for each momentumk
and quantum numberα is given by the expectation value of the number operatorN̂out

α,k
of final-state gravitons with respect to the initial vacuum state|0, in〉:

N
out

α,k = 〈0, in|N̂out
α,k|0, in〉. (38)

If the brane undergoes a non-trivial dynamics betweentin < t < tout we have ˆaout
α,k|0, in〉 6=

0 in general, i.e. graviton production from vacuum fluctuations takes place.

4. RESULTS

4.1. Energy density

For a usual four-dimensional tensor perturbationhµν on a background metricgµν an
associated effective energy momentum tensor can be defined unambiguously by

Tµν =
1
κ4

〈hαβ‖µhαβ
‖ν〉 , (39)

where the bracket stands for averaging over several periodsof the wave and “‖” denotes
the covariant derivative with respect to the unperturbed background metric. The energy
density of gravity waves is the 00-component of the effective energy momentum ten-
sor. We shall use the same effective energy momentum tensor to calculate the energy
density corresponding to the four-dimensional spin-2 graviton component of the five-
dimensional tensor perturbation on the brane, i.e. for the perturbationhi j (t,x,yb). For
this it is important to remember that in our low energy approach, and in particular at
very late times for which we want to calculate the energy density, the conformal time
η on the brane is identical to the conformal bulk timet. The energy density of four-
dimensional spin-2 gravitons on the brane produced during the brane motion is then
given by

ρ =
1

κ4a2

〈〈

0, in| ˙̂hi j (t,x,yb)
˙̂h

i j
(t,x,yb)|0, in

〉〉

. (40)

Here the outer bracket denotes averaging over several oscillations, which we embrace
from the very beginning. The factor 1/a2 comes from the fact that an over-dot indicates

2 Note that the notations|0, t < tin〉 and|0,t > tout〉 do not mean that the states are time-dependent; states
do not evolve in the Heisenberg picture.



the derivative with respect to conformal timet ≃ η. The detailed calculation given in
Ref. [12] leads to

ρ =
2
a4 ∑

α

∫

d3k
(2π)3ωα,kNα,k(t)Y

2
α (a) (41)

where againNα,k(t) is the instantaneous particle number andYα is related to value of
the wave function on the brane by

Yα(a) =
a
L

φα(t,yb(t)) .

The factor two reflects the two polarizations. At late times,t > tout, after particle creation
has ceased, the energy density is

ρ =
2
a4 ∑

α

∫

d3k
(2π)3ωout

α,k N
out

α,k Y
2

α (a). (42)

This expression looks at first sight very similar to a “naive”definition of energy density
as integration over momentum space and summation over all quantum numbersα of
the energyωout

α,k N
out

α,k of created gravitons. However, the important difference isthe

appearance of the functionY 2
α (a) which exhibits a different dependence on the scale

factor for the zero mode compared to the KK-modes.
Let us decompose the energy density into zero mode and KK contributions

ρ = ρ0+ρKK. (43)

EvaluatingY0(a) one then obtains for the energy density of the massless zero mode

ρ0 =
2
a4

∫

d3k
(2π)3 kN

out
0,k . (44)

This is the expected behavior; the energy density of standard four-dimensional gravitons
scales like radiation.
In contrast, the energy density of the KK-modes at late timesis found to be

ρKK =
L2

a6

π2

2

∞

∑
n=1

∫

d3k
(2π)3ωout

n,k N
out

n,k m2
nY

2
1 (mnys), (45)

which decays like 1/a6. As the universe expands, the energy density of massive gravi-
tons on the brane is therefore rapidly diluted. The total energy density of gravitational
waves in our universe at late times is dominated by the standard four-dimensional gravi-
ton (massless zero mode). In the large mass limit,mnys ≫ 1, n ≫ 1, the KK-energy
density can be approximated by

ρKK ≃ πL2

2a6ys
∑
n

∫

d3k
(2π)3 N

out
n,k ωout

n,k mn . (46)



Due to the factormn coming from the functionY 2
n , i.e. from the normalization of the

functionsφn(t,y), in order for the summation over the KK-tower to converge, the number
of produced gravitonsN out

n,k has to decrease faster than 1/m3
n for large masses and not

just faster than 1/m2
n as one might naively expect.

4.2. Escaping of massive gravitons and localization of gravity

As we have shown, the energy density of the KK modes scales, atlate times when
particle production has ceased, with the expansion of the universe like

ρKK ∝ 1/a6 , (47)

i.e. it decays by a factor 1/a2 faster than the corresponding expression for the zero mode
graviton and behaves effectively like stiff matter. Mathematically, this difference arises
from the distinct behavior of the functionsY0(a) and Yn(a), n ≥ 1, and is a direct
consequence of the warping of the fifth dimension which affects the normalization of
the mode functionsφα . But what is the underlying physics? As we shall discuss now,
this scaling behavior for the KK particles has indeed a straight forward very appealing
physical interpretation.

First, the massmn is a comoving mass. The (instantaneous) ’comoving’ frequency
or energy of a KK graviton isωn,k =

√

k2+m2
n, with comoving wave numberk. The

physical mass of a KK mode measured by an observer on the branewith cosmic time
dτ = adt is thereforemn/a, i.e. the KK masses are redshifted with the expansion of the
universe. This comes from the fact thatmn is the wave number corresponding to they-
direction with respect to the bulk timet which corresponds toconformal timeη on the
brane and not to physical time. It implies that the energy of KK particles on a moving
AdS brane redshifts like that of massless particles. From this alone one would expect the
energy density of KK-modes on the brane to decay like 1/a4 (see also Appendix D of
[19]).

Now, let us define the normalized “wave function” for a graviton

Ψα(t,y) =
φα(t,y)

y3/2
, 2

∫ ys

yb

dyΨ2
α(t,y) = 1. (48)

From the expansion of the gravity wave amplitude Eq. (21) andthe normalization
condition it is clear thatΨ2

n(t,y) gives the probability to find a graviton of massmα
for a given (fixed) timet at positiony in theZ2-symmetric AdS-bulk.

In Fig. 2 we plot the evolution ofΨ2
1(t,y) under the influence of the brane motion

with vb = 0.1. For this motion, the physical brane starting atyb → 0 for t →−∞ moves
towards the static brane, corresponding to a contracting universe. After a bounce, it
moves back to the Cauchy horizon, i.e. the universe expands.The second brane is
placed atys = 10L and y ranges fromyb(t) to ys. As it is evident from this Figure,
Ψ2

1 is effectively localized close to the static brane, i.e. theweight of the KK-mode
wave function lies in the region of less warping, far from thephysical brane. Thus the
probability to find a KK-mode is larger in the region with lesswarping. Since the effect



FIGURE 2. Evolution of Ψ2
1(t,y) = φ2

1 (t,y)/y3 corresponding to the probability to find the first KK
graviton at timet at the positiony in the AdS-bulk. The static brane is atys = 10L and the maximal brane
velocity is given byvb = 0.1. On the right hand panel a zoom into the bulk-region close tothe moving
brane is shown.

of the brane motion onΨ2
1 is hardly visible in Fig. 2, we also show the behavior ofΨ2

1
close to the physical brane (right hand panel).

This shows thatΨ2
1 peaks also at the physical brane but with an amplitude roughly

ten times smaller than the amplitude at the static brane. While the brane, coming from
t →−∞, approaches the point of closest encounter,Ψ2

1 slightly increases and peaks at
the bouncet = 0 where, as we shall see, the production of KK particles takesplace.
Afterwards, fort → ∞, when the brane is moving back towards the Cauchy horizon, the
amplitudeΨ2

1 decreases again and so does the probability to find a KK particle at the
position of the physical brane, i.e. in our universe. The parameter settings used in Fig. 2
are typical parameters which we use in the numerical simulations. However, the effect
is illustrated much better if the second brane is closer to the moving brane. In Figure 3
(left panel) we showΨ2

1 for the same parameters as in Figure 2 but now withys = L. In
this case, the probability to find a KK particle on the physical brane is of the same order
as in the region close to the second brane during times close to the bounce. However, as
the universe expands,Ψ2

1 rapidly decreases at the position of the physical brane.
The behavior of the KK-mode wave function suggests the following interpretation: If

KK gravitons are created on the brane, or equivalently in ouruniverse, they escape from
the brane into the bulk as the brane moves back to the Cauchy horizon, i.e. when the
universe undergoes expansion. This is the reason why the power spectrum and the energy
density imprinted by the KK-modes on the brane decrease faster with the expansion of
the universe than for the massless zero mode.

The zero mode, on the other hand, is localized at the positionof the moving brane. The
profile of φ0 does not depend on the extra dimension, but the zero-mode wave function
Ψ0 does. Its square is

Ψ2
0(t,y) =

y2
sy2

b

y2
s−y2

b

1
y3 → y2

b

y3 =

(

L
a

)2 1
y3 if ys ≫ yb , (49)



such that on the brane (y = yb) it behaves as

Ψ2
0(t,yb) ≃

a
L
. (50)

Equation (49) shows that, at any time, the zero mode is localized at the position of the
moving brane. For a better illustration we show Eq. (49) in Fig. 3, right panel for the
same parameters as in the left panel. This is the “dynamical analog” of the localization
mechanism for four-dimensional gravity discussed in [3, 4].

Ψ2

0
(t, y)

t

y
0

0

= 1

ys

FIGURE 3. Left panel: evolution ofΨ2
1(t,y) for ys = L andvb = 0.1. Right panel: localization of four-

dimensional gravity on a moving brane. Evolution ofΨ2
0(t,y). Note the opposite behavior of zero mode

and massive mode.

This result is in contradiction with the findings of Ref. [14]where the authors con-
clude that for an observer on the brane KK gravitons behave like dust with a negative
energy density. To arrive at this result, they use Gaussian normal coordinates,

ds2 = −N2(t,z)dt2+Q2(t,z)a2(t)δi j dxidxj +dz2 with (51)

Q = cosh(z/L)− γ−1sinh(|z|/L) N = cosh(z/L)−
(

γ−1− γ̇
γ2H

)

sinh(|z|/L)

γ(t)−1 =
√

(HL)2+1 see Eq. (5). (52)

They then argue that at low velocity,γ ≃ 1, one may neglect the difference betweenN
andQ so that one obtains the metric

ds2 ≃ dz2+e−2|z|/L (

−dt2+a2(t)δi j dxidxj) .

In this metric, the mode equation for the KK modes separates and their time evolution
can be determined by simply solving the time part of the equation, see [14]. There is,
however, a flaw in this argument: the above approximation is only valid sufficiently close
to the brane (which is positioned atz≡ 0 in these coordinates), but far from the brane,
when, e.g.,(γ−1−1)sinh(|z|/L) > exp(−2|z|/L) the above metric is no longer a good
approximation and the difference betweenN andQ does become important. As we have
seen, the wave function of the KK gravitons actually is largefar away from the brane
and the time dependence enters in an important way in the normalization of the mode
function which changes its scaling with time.



4.3. Spectra

In Fig. 4 we show the results of a numerical simulation for three-momentumk =
0.01/L, static brane positionys = 10L and maximal brane velocityvb = 0.1. Depicted is
the graviton number for one polarizationNα,k(t) for the zero mode and the first ten KK-
modes as well as the evolution of the scale factora(t) and the position of the physical
braneyb(t).
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In Fig. 5 we show some KK spectra which we have obtained by integrating the
equation of motion numerically. More details about the numerics and results for different
values of the parameters can be found in Ref. [12]. In this paper we also derive an
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FIGURE 5. Final state KK graviton spectra fork = 0.001,ys = 100, different maximal brane velocities
vb at tout = 400 for one polarization. The numerical results are compared with the analytical prediction
(dashed line).

analytical approximation for the spectrum which is good forKK massesmn < 1. The
numerical calculations are in very good agreement with the analytical estimates, where
applicable.



Integrating the zero-mode energy density over frequency with a cutoff given by the
strong scale,kmax = 1/Ls leads to the following simple result for the gravitational wave
density parameter [12]

Ωh0 ≃
vb

2
Ωrad so that vb

<∼0.2. (53)

Ωrad is the density parameter of the relativistic degrees of freedom at nucleosynthesis, the
photon and three species of neutrini. The limitvb < 0.2 follows from the nucleosynthesis
constraint which tells us that during nucleosynthesisΩrad should not deviate by more
than 10% from its standard value [20]. The graviton spectrumis blue with tensor spectral
index nT = 2. Its amplitude on Hubble scales is therefore severely suppressed and it
leaves no detectable imprint on the cosmic microwave background [20].

Also the energy density of the KK modes grows likek2 for suffiently largek,

dρKK (k)
d logk

∝ k2 , k >∼1

and its maximum comes from the cutoff scalekmax = 1/Ls. We find

ρKK ≃ π5v2
b

a6ys

L2

L5
s
,

(

ρKK

ρrad

)

max
≃ 100v3

b

(

L
ys

)(

L
Ls

)2

. (54)

It is easy to see that low energy requiresyb < L at all times. Therefore, to initiate a
bounce, whereyb should be close toys, we expectys

<∼L. For typical values of the string
scale,Ls ≪ L and ys ∼ L, the above ratio is not small and back reaction of the KK
gravitons on the geometry has to be taken into account. The ratio indicated is the one
directly after the big bang. As time goes on the KK mode energydensity dilutes faster
than radiation and rapidly becomes subdominant.

5. CONCLUSIONS

In braneworld cosmology where expansion is mimicked by a brane moving through a
warped higher dimensional spacetime, the brane motion leads to particle creation via
the dynamical Casimir effect for all bulk modes. Here we havestudied the generation of
gravitons.

The KK gravitons scale like stiff matter,ρKK ∝ 1/a6, and can therefore not represent
dark matter. In an ’ekpyrotic type’ scenario with an AdS5 bulk, the nucleosynthesis
bound on gravitational waves requiresvb < 0.2. Furthermore, back reaction of KK
gravitons on the evolution of spacetime is most probably notnegligible at early times.

In the RSII model where only one brane is present, graviton generation is negligi-
ble [18].
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