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Abstract. If our Universe is a 31 brane in a warped-4 1 dimensional bulk so that its expansion
can be understood as the motion of the brane in the bulk, nhe dependence of the boundary
conditions for arbitrary bulk fields can lead to particleatien via the dynamical Casimir effect.
In this talk | report results for the simplest such scenasiben the only particle in the bulk is the
graviton and the bulk is the 5 dimensional anti-de Sittecsfime.
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1. INTRODUCTION

The idea that our Universe be at3l dimensional membrane in a higher dimensional
'bulk’ spacetime has opened new exciting prospects for obsgy, for reviews see [1,
2]. In the simplest braneworlds motivated by string thethrg, standard model particles
are confined to the brane and only the graviton can propagdlkeibulk. Of particular
interest is the Randall-Sundrum (RS) model [3, 4], wherelhi is 5-dimensional
anti-de Sitter space, AdSIf the so called RS fine tuning condition is satisfied, it can b
shown that gravity on the brane ’looks 4-dimensional’ at Evergies.

Within this model, cosmological evolution can be interpetas the motion of the
physical brane, i.e. our Universe, through the 5d bulk. Sutime-dependent boundary
does in general lead to particle production via the dynah@eaimir effect [5].

Of course one can always choose coordinates with respechichvthe brane is
at rest, e.g. Gaussian normal coordinates. But then us(extept in the case of de
Sitter expansion on the brane [6]), the perturbation equoatescribing the evolution of
gravitons is not separable and can be treated only with noataimulations [7, 8, 9].
Furthermore, in a time-dependent bulk a mode decomposgiongeneral ambiguous
and one cannot split the field in a zero mode and Kaluza-Kkk) (nodes in a unique
way.

Based on the picture of a moving brane in Ad®e have studied graviton production
in an ekpyrotic type scenario [10] where our Universe firgirapches a second static
brane. After a 'collision’ the physical brane reverses dig and moves away from
the static brane, see Fig. 1. For an observer on the branéiyghehase corresponds
to a contracting Universe and the collision represents g Bang’ after which the
Universe starts expanding.

Here | report on the results which we have obtained in ouriptsypapers [11, 12, 13].
We have found that the energy density of KK gravitons in Ad&ales like stiff matter,



FLRW-brane .
(3-brane, 7 > 0) fixed brane

/

L2
v?

»
>

fifth dimension ¥y

-

Ys

Yv(t)

expansion contraction

FIGURE 1. Two branes in an Adssspacetime. The physical brane is to the left. While it is apphing
the static brane its scale factor is decreasing, the Ureviersontracting, and when it moves away from
the static brane the Universe is expanding. The AdS cureafutiud_ (dashed line) and value of the scale
factor of the brane metric as function of the extra dimengifiight (blue) line) are also indicated.

pkk O a8, herea denotes the scale factor defined in Eq. (2). Therefore, KKitgnas
in AdSs cannot represent the dark matter in the Universe. This fgndim contrast with
the results of Ref. [14] and we comment on this below. We hés@ faund that in the
early Universe the back reaction from KK gravitons on the&klgdometry is likely to be
important.

Finally, we have derived a limit for the maximal brane vetgche bounce velocity,
Vp < 0.2 in order not to over-produce zero-mode (i.e. 4d) gravittims energy density
of which is constrained by the nucleosynthesis bound. We halculated the spectra of
both, the zero-mode and the KK gravitons. In Refs. [11, 12hase, however, neglected
a term linear in the brane velocityin the boundary conditions. In our latest work,
Ref. [13] we derived a method which includes this term anoveslto treat the problem
without any low velocity approximation. We have shown tha tow velocity results
previously obtained are not modified.

The remainder of this paper is organized as follows. In the section we present
the basic equations for the evolution of tensor perturbatigravitons) and we explain
why it is not straight forward to include the velocity termtbe boundary condition. In
Section 3 we quantize the system. In Section 4 we discussesults and in Section 5
we conclude.



2. AMOVING BRANE IN AdSs

2.1. Thebackground

In Poincaré coordinatgs®) = (t,x,y) with x = (x},x2,x3) andA =0, ..., 4, the AdS
(bulk) metric is given by

2
ds’ = gagdXdx& = % [—dt?+ &;dXdX +dy?] | (1)

wherei, ] = 1,2,3 andL is the AdS curvature radius which is related to the bulk
cosmological constant by the 5d Einstein equatier\ = 6/L2. The physical brane
representing our (spatially flat) Universe is located at sdime dependent position
Y = ¥p(t) in the bulk, and the metric induced on the brane is the FriedRabertson-
Walker metric,

ds? = a%(n) [~dn?+ &;dXdx] | (2)
with scale factoa(n) which is given by the brane position,

a(n) = yb—tw | 3)

The conformal time) of an observer on the brane, is related to the bulk tivia

dn =+v1—v2dt=y dt. (4)

Here we have introduced the brane velocity

dyh LH 1
dt V14 L2H?2 A v ©)
H is the usual Hubble parameter,
l1da 4 _1
H=—5—= =—L .
2an a -~ W (6)

The brane dynamics, as a result of the second junction gondis determined by the
modified Friedmann equation [1]

Kap P
H2= 25 (14— 7
3 (1725) 0
whereq is the brane tensiom the energy density on the brane, and we assume the RS
fine tuning condition [3]
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We define the string and Planck scales by

3
Ks = — =Lg, Ka=—5 =Lp. (9)
M3 M3
Note that the RS fine-tuning condition is equivalent to
Ls _ L3
Ks =K4L Or —=—. 10
5 4 L Lg ( )

2.2. Tensor perturbations

We now consider 3d tensor perturbatidngt, x,y) of the spatial three-dimensional
geometry on this background. The perturbed bulk metricgead

L2 o
dSZ:? [—dt?+ (&; + 2hij)dXdX +dy?] . (11)
Tensor modes satisfy the traceless and transverse ccmzjh]ez (}.h‘j = 0. These con-

ditions imply thath;; has only two independent degrees of freedom, the two palaoiz
statess = x, 4. We decomposhjj into spatial Fourier modes,

d3k i
hij (t,x,y) = /W 2 elk-xa'j (k)h,(t,y;k) , (12)

whereef; (k) are unitary constant transverse-traceless polarizagiosors which form
a basis of the two polarization states= x,+. Since we assume parity symmetry, we
shall neglect in the following the distinction between thwe graviton polarizations and
consider only one of them. We then have to multiply the finauhs for e.g. particle
number or energy density by a factor of two to account for Ipatlarizations.

The perturbed Einstein equations and the second junctioditton lead to the fol-
lowing boundary value problem

at2+k2_ay2+§0y h(t,y;k) =0 inthe bulk k% = [k[?, (13)
and

y (V6 +dy) h]yb(t) =0 on the brane (14)

We introduce also a second, static brane at positipnvhich requires the additional
boundary condition
dyh|,, =0 on the static brane (15)

Eq. (13) is the Klein-Gordon equation for a minimally couplmassless mode in
AdSs, i.e. the operator acting dmis just the Klein-Gordon operator

o= %aA V=00 . (16)



Equation (14) is the time-dependent boundary condition)(8&ning from the fact
that the moving brane acts like a "moving mirror" for the gtatvonal perturbations.
Only in the rest-frame of the brane do we have pure NeumannB& generic frame
we have the Lorentz transformed BC which contains a velaeriy vo;.

We assume that the brane is filled with a perfect fluid suchtkigaie are no anisotropic
stress perturbations in the brane energy momentum tensothére is no coupling of
gravitational waves to matter. If this were the case, ths.rdf Eq. (14) would not be
zero but a term couplinky;j to the matter on the brane, see Eq. (2.25) of [12].

For the tensor perturbations the gravitational action ugetmond order in the pertur-
bations reads

L3 ¥s dy
y:4—/dt/d3k/ Wlan2—ah2—kh? . 17
=4 [ 3 N2 =13~ (17)

One factor of two in the action is due Z symmetry while a second factor comes from
the two polarizations.

2.3. Dynamical Casimir effect approach

The wave equation (13) itself has no time dependence andlysidgscribes the
propagation of free modes. It is the time dependence of th¢ 1B that sources the
non-trivial time-evolution of the perturbations. As it iWknown, such a system of a
wave equation and time-dependent BC lead, within a quanteohanical formulation,
to particle production from vacuum fluctuations. In the eomtof the photon field
perturbed by a moving mirror this goes under the name “dyoah@asimir effect” [5].

In [12] we have extended a formalism which has been sucdgssefuployed for the
numerical investigation of photon production in dynamicavities [15, 16, 17] to the
RS braneworld scenario. We have studied graviton produblyaa moving brane, which
we call dynamical Casimir effect for gravitons, for a bourgcbraneworld scenario.

However, in order to solve the problem, we have neglectedviiecity term in
Eq. (14). The ansatz

h=Y aa(t)e '@ (t,y)+he., wf =K +ma(t)?
a

then leads to a Sturm—Liouville problem for the instantarseeigenfunctiong, (t,y)
which satisfy

3
(~8+30) &=t (18)
The solutions of (18) are
t
) = U (19)
Y2 —Yp(t)

@(t,y) = Na(t)y?Co(mn(t),Yu(t),y) with
Co(mxy) = Ya(mx)dy(my)—Ji(my)Y,(my). (20)



The functiong is the zero mode which corresponds to the ordiri8ry 1)d graviton on
the brane while they, are the KK modes. The massegare determined by the boundary
condition at the static brane, see, e.g. [18] for more det8ihcey, satisfies Neumann
boundary conditions, we know that the solutidigg ), form a complete orthonormal
set of functions on the interv@y(t),ys] normalized by the scalar product

Ys dy
, = 2/ —= =043 -
(0:95) =2 3% % =ap

Therefore, any general solution which satisfies Neumann &Cbe expanded in these
instantaneous eigenfunctions. If we add the tednto the boundary condition this
feature is lost, and we can no longer expect to find a comphitefsinstantaneous
eigenfunctions.

However, since the entire effect disappears when the \tgltarids to zero, neglecting
a term which is first order in the velocity seems not to be &iast. This problem led us
to search for another approach which is discussed in Refwh8re we transform to a
coordinate system where the velocity term disappearsimiyt There also show that
for low velocitiesv < 0.3, say the corrections obtained with this consistent treatrare
below a few percent. We therefore ignore it in the following.

3. QUANTIZATION

3.1. Equation of motion

The gravitational wave amplitudgt,y; k) subject to Neumann boundary conditions

can be expanded as
K 00
ht.yik)=1/73 Y dak()@(ty). (21)
a=0

The coefficientsgy k(t) are canonical variables describing the time evolution ef th

perturbations and the factgy'ks/L3 has been introduced in order to render the’'s
canonically normalized. Fdr(t,y,X) to be real, we have to impose the following reality
condition on the canonical variables,

dok = Ya, k- (22)

One could now insert the expansion (21) into the wave equdti@), multiply it
by @s(t,y) and integrate out thg—dependence by using the orthonormality to derive
the equations of motion for the variablgg x. However, as we explain in Refs. [12,
13], a Neumann boundary condition at a moving brane is notpetitnle with a free
wave equation. The only consistent way to implement Neunbawmdary conditions is
therefore to consider the action (17) of the perturbatiatha starting point to derive
the equations of motion fay, k. Inserting (21) into (17) leads to the action

l .
s =5/ dsk{;[l%,sz—wé,uqa,kﬂ 4



> [Mag (Ga k8, —k + 9a,—kp k) + Nag%a ks, k] } - (23)
ap

We have introduced the time-dependent frequency of a granitode

WG =/ K2+, (24)

and the time-dependent coupling matrices

Nag = (G, d¢B) = MayMg, = (MMT)4p, (26)
y

which are given explicitely in Ref. [12] (see also [18]). Téguations of motion for the
canonical variables are the Euler—Lagrange equationstheraction (23),

Ga k + wg{,kqa,k +> Mg —Mgp] Gpk + > [Mgp —Ngp] gk =0. (27)
B B

The motion of the brane through the bulk, i.e. the expansfahe universe, is en-
coded in the time-dependent coupling matridégs andN,g. These mode couplings
are caused by the time-dependent boundary condjlg(t,y)|y, = 0 which forces the
eigenfunctionsy, (t,y) to be explicitly time-dependent. In addition, the frequeoné
the KK modeswy k is also time-dependent since the distance between the avesr
changes when the brane is in motion. Both time dependenarekead to the amplifica-
tion of tensor perturbations and, within a quantum treatmdmch is developed below,
to graviton production from vacuum.

Because of translational invariance with respect to thections parallel to the brane,
modes with differenk do not couple in (27). The three-momentlranters the equation
of motion for the perturbation only via the frequengy . Equation (27) is similar to
the equation describing the time evolution of electromagrield modes within a three-
dimensional dynamical cavity [16] and may effectively bectéed by a massive scalar
field on a time-dependent interval [17]. For the electronsdigrfield, the dynamics of
the cavity, or more precisely the motion of one of its walesads to photon creation
from vacuum fluctuations. This phenomenon is usually reteto as dynamical Casimir
effect. Inspired by this, we call the production of gravédoy the moving brane the
dynamical Casimir effect for gravitons

3.2. Quantization

Asymptotically, i.e. fort — +oo, the physical brane approaches the Cauchy horizon
(Yo — 0), moving very slowly. Then, the coupling matrices vanisk ghe KK masses
become constant,

lim Mgg(t)=0, tIim mg(t) =const Va, . (28)

t—+oo ——+o0



In this limit, the system (27) reduces to an infinite set ofaued harmonic oscillators.
This allows to introduce an unambiguous and meaningfuigartoncept, i.e. the notion
of (massive) gravitons.

Canonical quantization of the gravity wave amplitude iSq@mned by replacing the
canonical variablegq i by the corresponding operatarg i

t y’ \/>Z qu k (29)

Adopting the Heisenberg picture to describe the quantura &wolution, it follows that
Ja k satisfies the same equation (27) as the canonical vadghle

Under the assumptions outlined above, the ope@t@rcan be written for very early
times,t < tj,, as

qu(t <tpn) = [éicrr],k i t +é|m‘ elwa R 7 (30)

1
where we have introduced the reference frequency
W = Wa k(t <tin) - (31)

This expansion ensures that Eq. (22) is satisfied. The seiriigation and creation
operators{a'n '”T} corresponding to the notion of gravitons to« tj, is subject to
the usual commutation relations

[ ant] = Gus®k—K), (32)
[ég]7k7 éi(?’,k’] - [élgT(, élc?/-tk’] — O (33)

For very late timest > toy, i.€. after the motion of the brane has ceased, the operator
Ja k can be expanded in a similar manner,

4 1 A ° A out
Gk (t > tour) = —— [agtjt(e gt a‘g,“”ké Wt kt] 3)
a.k
with final state frequency

wgu& = wa k(t > tout) . (35)

The annihilation and creation operatd@“t " 0””} correspond to a meaningful defi-
nition of final state gravitons (they are assomated withitp@sand negative frequency
solutions fort > tyy;) and satisfy the same commutation relations as the initi ©p-
erators.

1 Of course the brane never really stops moving, but beforetaingimet;, and after a certain timgy:
the motion is so slow that no particle production takes ple¢ehave chosen these times sufficiently early
(rsp. late) so that the numerical results are independeaheafchoice.



Initial |0,in) = |0,t < ti,) and final|0,out) = |0,t > toy) Vacuum states are uniquely
defined vi& .
4y kl0,in) =0, &3%[0,out =0, Va, k. (36)

The operators counting the number of particles defined vagipect to the initial and
final vacuum state, respectively, are

Nak = aqidax . Nok =agi'agk . (37)
The number of gravitons created during the motion of the dfaneach momenturk
and quantum numbaer is given by the expectation value of the number operhl@ﬁjf

of final-state gravitons with respect to the initial vacuuate|0,in):
A2k =(0,in|N%[0,in). (38)

If the brane undergoes a non-trivial dynamics betwigent < toy; we haveag“f( |0,in) #
0in general, i.e. graviton production from vacuum fluctoasi takes place.

4. RESULTS

4.1. Energy density

For a usual four-dimensional tensor perturbatign on a background metrigy,, an
associated effective energy momentum tensor can be defireedhiguously by

1
Tuv = K_4<ha[3\|uha[|;‘v> ) (39)

where the bracket stands for averaging over several peoidtie wave and|f” denotes
the covariant derivative with respect to the unperturbeskgpeound metric. The energy
density of gravity waves is the 00-component of the effecemergy momentum ten-
sor. We shall use the same effective energy momentum teossaiculate the energy
density corresponding to the four-dimensional spin-2 igpavcomponent of the five-
dimensional tensor perturbation on the brane, i.e. for #réupbationh;; (t,x,yy). For
this it is important to remember that in our low energy apphgand in particular at
very late times for which we want to calculate the energy gnthe conformal time
n on the brane is identical to the conformal bulk timélrhe energy density of four-
dimensional spin-2 gravitons on the brane produced duhegbrane motion is then
given by

p= i <<07|n‘ﬁll <t7x7yb)f:]ij (t,X,yb)\O,in>> . (40)

K4 a2

Here the outer bracket denotes averaging over severalatgsik, which we embrace
from the very beginning. The factor/a? comes from the fact that an over-dot indicates

2 Note that the notation®,t < ti,) and|0,t > toy:) do not mean that the states are time-dependent; states
do not evolve in the Heisenberg picture.



the derivative with respect to conformal tinhe< . The detailed calculation given in
Ref. [12] leads to

3
p= 23 | s ax9E(a) @)

where again/tg k(t) is the instantaneous particle number a#gdis related to value of
the wave function on the brane by

Pa(2) = L @u(tyo(0)).

The factor two reflects the two polarizations. At late tintes tout, after particle creation
has ceased, the energy density is

d3k out out 4,2
a4Z/ 3 akf/V @/() (42)

This expression looks at first sight very similar to a “naidgefinition of energy density
as integration over momentum space and summation over attgon numbersr of
the energywy °”t Nk ot of created gravitons. However, the important differencénis

appearance of the funCtl(ﬁ(Z( a) which exhibits a different dependence on the scale
factor for the zero mode compared to the KK-modes.
Let us decompose the energy density into zero mode and KKibotibns

P = Po+ PKK- (43)

Evaluating?p(a) one then obtains for the energy density of the massless zeide m

2 [ d%
Po = y / W k%?kUt . (44)

This is the expected behavior; the energy density of stalfdar-dimensional gravitons
scales like radiation.
In contrast, the energy density of the KK-modes at late timésund to be

L2 &

PKK = 55 d k Wk

OUt mﬁYl (Mnys), (45)

which decays like 1a°. As the universe expands, the energy density of massivé-grav
tons on the brane is therefore rapidly diluted. The totatgyneensity of gravitational
waves in our universe at late times is dominated by the stdridar-dimensional gravi-
ton (massless zero mode). In the large mass limitis > 1, n > 1, the KK-energy
density can be approximated by

.2 d3k
2a6yS; / (2m)3 nOkUtwr?Llit”h (46)



Due to the factom, coming from the functior@nz, i.e. from the normalization of the
functionsgy(t,y), in order for the summation over the KK-tower to converge riomber
of produced gravitons# 9" has to decrease faster thafng for large masses and not

just faster than AmZ as one might naively expect.

4.2. Escaping of massive gravitons and localization of gravity

As we have shown, the energy density of the KK modes scaldateatimes when
particle production has ceased, with the expansion of thetse like

prk 01/@°, (47)

i.e. it decays by a factor/B? faster than the corresponding expression for the zero mode
graviton and behaves effectively like stiff matter. Matteimally, this difference arises
from the distinct behavior of the functior®y(a) and #n(a), n > 1, and is a direct
consequence of the warping of the fifth dimension which &féice normalization of
the mode functiongy,. But what is the underlying physics? As we shall discuss now,
this scaling behavior for the KK particles has indeed a ghtaiorward very appealing
physical interpretation.

First, the massn, is a comoving mass. The (instantaneous) 'comoving’ frequen
or energy of a KK graviton isu, x = /k?+ mj, with comoving wave numbek. The
physical mass of a KK mode measured by an observer on the tiimeosmic time
dtr = adtis thereforem,/a, i.e. the KK masses are redshifted with the expansion of the
universe. This comes from the fact thmt is the wave number corresponding to the
direction with respect to the bulk timewhich corresponds toonformal timen on the
brane and not to physical time. It implies that the energy Kfpérticles on a moving
AdS brane redshifts like that of massless particles. Frasrallone one would expect the
energy density of KK-modes on the brane to decay lika*i(see also Appendix D of
[19]).

Now, let us define the normalized “wave function” for a grawit

valty) = 2002 [Mawky -1 (48)

From the expansion of the gravity wave amplitude Eq. (21) #red normalization
condition it is clear thatb?(t,y) gives the probability to find a graviton of massg,
for a given (fixed) time at positiony in the Z,-symmetric AdS-bulk.

In Fig. 2 we plot the evolution o¥2(t,y) under the influence of the brane motion
with vy = 0.1. For this motion, the physical brane startingyat— O fort — —co moves
towards the static brane, corresponding to a contractingerse. After a bounce, it
moves back to the Cauchy horizon, i.e. the universe exparus.second brane is
placed atys = 10L andy ranges fromy,(t) to ys. As it is evident from this Figure,
W2 is effectively localized close to the static brane, i.e. theight of the KK-mode
wave function lies in the region of less warping, far from gig/sical brane. Thus the
probability to find a KK-mode is larger in the region with lesarping. Since the effect



FIGURE 2. Evolution of W2(t,y) = ¢(t,y)/y® corresponding to the probability to find the first KK
graviton at timet at the positiory in the AdS-bulk. The static brane isyt= 10L and the maximal brane
velocity is given byv, = 0.1. On the right hand panel a zoom into the bulk-region closdéomoving
brane is shown.

of the brane motion o2 is hardly visible in Fig. 2, we also show the behavioréf
close to the physical brane (right hand panel).

This shows thaw% peaks also at the physical brane but with an amplitude rgughl
ten times smaller than the amplitude at the static branelé/he brane, coming from
t — —oo, approaches the point of closest encourﬂ&rslightly increases and peaks at
the bounce = 0 where, as we shall see, the production of KK particles tqkase.
Afterwards, fort — o, when the brane is moving back towards the Cauchy horizen, th
amplitudewi decreases again and so does the probability to find a KK feegidhe
position of the physical brane, i.e. in our universe. Thepaater settings used in Fig. 2
are typical parameters which we use in the numerical sinauat However, the effect
is illustrated much better if the second brane is closer ¢éantloving brane. In Figure 3
(left panel) we shovwi for the same parameters as in Figure 2 but now wdtk L. In
this case, the probability to find a KK particle on the phykimane is of the same order
as in the region close to the second brane during times ababe tboounce. However, as
the universe expand?.{% rapidly decreases at the position of the physical brane.

The behavior of the KK-mode wave function suggests thewolg interpretation: If
KK gravitons are created on the brane, or equivalently inumiverse, they escape from
the brane into the bulk as the brane moves back to the Cauaigohpi.e. when the
universe undergoes expansion. This is the reason why ther@p&ctrum and the energy
density imprinted by the KK-modes on the brane decreaserfasth the expansion of
the universe than for the massless zero mode.

The zero mode, on the other hand, is localized at the posifitte moving brane. The
profile of gy does not depend on the extra dimension, but the zero-mode faragtion
Wo does. Its square is

W2 t,y) =
O( ) ys yby3 y3

yS yb 1 yb L
a

21
—) e, (49)



such that on the brang € y,) it behaves as

a
WAt o) = (50)

Equation (49) shows that, at any time, the zero mode is loedlat the position of the
moving brane. For a better illustration we show Eq. (49) ig. B, right panel for the
same parameters as in the left panel. This is the “dynamnzdbg” of the localization
mechanism for four-dimensional gravity discussed in [3, 4]

! uz\"\mw‘} |
h

L

FIGURE 3. Left panel: evolution ofV2(t,y) for ys = L andv, = 0.1. Right panel: localization of four-
dimensional gravity on a moving brane. Evolution®(t,y). Note the opposite behavior of zero mode
and massive mode.

This result is in contradiction with the findings of Ref. [IMhere the authors con-
clude that for an observer on the brane KK gravitons behd&eedust with a negative
energy density. To arrive at this result, they use Gausssamal coordinates,

d = —N2(t,2)dt®+ Q?(t,2)a%(t)§;dXdx +dZ  with (51)
Q = coshz/L)—y sinh(Z/L) N:coslﬂ(z/L)—(y‘l—VZLH)sinh(|z|/L)

yt)™t = /(HL)2+1 seeEq. (5). (52)

They then argue that at low velocity~ 1, one may neglect the difference betwéén
andQ so that one obtains the metric

ds? ~ dZ +e 24/t (—dt® +a(t)§;dXdx) .

In this metric, the mode equation for the KK modes separatdgizeir time evolution
can be determined by simply solving the time part of the équasee [14]. There is,
however, a flaw in this argument: the above approximationig ealid sufficiently close

to the brane (which is positioned a= 0 in these coordinates), but far from the brane,
when, e.g.{y ! —1)sinh(|z|/L) > exp(—2|z|/L) the above metric is no longer a good
approximation and the difference betwd¢andQ does become important. As we have
seen, the wave function of the KK gravitons actually is lafi@eaway from the brane
and the time dependence enters in an important way in thealization of the mode
function which changes its scaling with time.



4.3. Spectra

In Fig. 4 we show the results of a numerical simulation foedimomentunk =
0.01/L, static brane positiops = 10L and maximal brane velocity, = 0.1. Depicted is
the graviton number for one polarizatiofy, (t) for the zero mode and the first ten KK-
modes as well as the evolution of the scale faei®y and the position of the physical
braneyy(t).
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FIGURE 4. Evolution of the graviton number i (t) for the zero mode (one polarization) and the first
ten KK-modes for three-momentukn= 0.01/L andv, = 0.1,ys = 10L.

In Fig. 5 we show some KK spectra which we have obtained bygrateng the
equation of motion numerically. More details about the ntioseand results for different
values of the parameters can be found in Ref. [12]. In thisepage also derive an

0

10°F —— M
- F [« n_=60 e
g max -
_5_ o nmax—80
=z
=
8 10'17 -
c E
=1
c /
c bl
o s
= 4
>, S
S 10%F > E
&) Sy .
e s -
© /7
8
7] %
E
3
= 10 F 3
C il | | L]
0.01 0.1 1 10

Kaluza-Klein mass m,

FIGURE 5. Final state KK graviton spectra fér= 0.001,ys = 100, different maximal brane velocities
Vp attout = 400 for one polarization. The numerical results are conai¢éh the analytical prediction
(dashed line).

analytical approximation for the spectrum which is goodKét massean, < 1. The
numerical calculations are in very good agreement with ttedyaical estimates, where
applicable.



Integrating the zero-mode energy density over frequendly avicutoff given by the
strong scalekmax = 1/Ls leads to the following simple result for the gravitationaiwe
density parameter [12]

V)
Qhoﬁierad sothat v, <0.2. (53)

Qraqis the density parameter of the relativistic degrees ofifioeeat nucleosynthesis, the
photon and three species of neutrini. The liwik 0.2 follows from the nucleosynthesis
constraint which tells us that during nucleosynthé3igy should not deviate by more
than 10% from its standard value [20]. The graviton specigaintue with tensor spectral
index nt = 2. Its amplitude on Hubble scales is therefore severely rmgspd and it
leaves no detectable imprint on the cosmic microwave backyt [20].

Also the energy density of the KK modes grows Iké&for suffiently largek,

dpk (K) 012

kz1
dlogk ’ ~
and its maximum comes from the cutoff scilgx = 1/Ls. We find
V2 L2 PKK L\ /L)?
~ - ~ 100v¢ <—) (—) . 54
Prx abys L2 (Prad) max ° Ys Ls &4

It is easy to see that low energy requings< L at all times. Therefore, to initiate a
bounce, wherg, should be close tgs, we expectis < L. For typical values of the string
scale,Ls < L andys ~ L, the above ratio is not small and back reaction of the KK
gravitons on the geometry has to be taken into account. Tiieeinalicated is the one
directly after the big bang. As time goes on the KK mode eneéysity dilutes faster
than radiation and rapidly becomes subdominant.

5. CONCLUSIONS

In braneworld cosmology where expansion is mimicked by adrmoving through a
warped higher dimensional spacetime, the brane motiorsleagarticle creation via
the dynamical Casimir effect for all bulk modes. Here we hstuelied the generation of
gravitons.

The KK gravitons scale like stiff matteoxyk [ 1/a6, and can therefore not represent
dark matter. In an 'ekpyrotic type’ scenario with an AdBulk, the nucleosynthesis
bound on gravitational waves requirgs < 0.2. Furthermore, back reaction of KK
gravitons on the evolution of spacetime is most probablynegligible at early times.

In the RSII model where only one brane is present, gravitoregaion is negligi-
ble [18].
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