62 research outputs found

    Plausible explanation for the third COVID-19 wave in India and its implications

    Get PDF
    Recently some of us used a random-walk Monte Carlo simulation approach to study the spread of COVID-19. The calculations were reasonably successful in describing secondary and tertiary waves of infection, in countries such as the USA, India, South Africa and Serbia. However, they failed to predict the observed third wave for India. In this work we present a more complete set of simulations for India, that take into consideration two aspects that were not incorporated previously. These include the stochastic movement of an erstwhile protected fraction of the population, and the reinfection of some recovered individuals because of their exposure to a new variant of the SARS-CoV-2 virus. The extended simulations now show the third COVID-19 wave for India that was missing in the earlier calculations. They also suggest an additional fourth wave, which was indeed observed during approximately the same time period as the model prediction

    Expectation of forward-backward rapidity correlations in p+pp+p collisions at the LHC energies

    Full text link
    Forward-backward correlation strength (bb) as a function of pesudorapidity intervals for experimental data from p+pˉp+\bar{p} non-singly diffractive collisions are compared to PYTHIA and PHOJET model calculations. The correlations are discussed as a function of rapidity window (Δη\Delta \eta) symmetric about the central rapidity as well as rapidity window separated by a gap (ηgap\eta_{gap}) between forward and backward regions. While the correlations are observed to be independent of Δη\Delta \eta, it is found to decrease with increase in ηgap\eta_{gap}. This reflects the role of short range correlations and justifies the use of ηgap\eta_{gap} to obtain the accurate information about the physics of interest, the long range correlations. The experimental bb value shows a linear dependence on lns\ln \sqrt{s} with the maximum value of unity being reached at s\sqrt{s} = 16 TeV, beyond the top LHC energy. However calculations from the PYTHIA and PHOJET models indicate a deviation from linear dependence on lns\ln \sqrt{s} and saturation in the bb values being reached beyond s\sqrt{s} = 1.8 TeV. Such a saturation in correlation values could have interesting physical interpretations related to clan structures in particle production. Strong forward-backward correlations are associated with cluster production in the collisions. The average number of charged particles to which the clusters fragments, called the cluster size, are found to also increase linearly with lns\ln \sqrt{s} for both data and the models studied. The rate of increase in cluster size vs. lns\ln \sqrt{s} from models studied are larger compared to those from the data and higher for PHOJET compared to PYTHIA. Our study indicates that the forward-backward measurements will provide a clear distinguishing observable for the models studied at LHC energies.Comment: 15 pages, 14 Figures, accepted for publication in International Journal of Modern Physics

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    On some strategies to design new high energy density molecules

    No full text
    Some new design principles of CHNO based high energy density molecules are explored. Several new molecules designed on the basis of these principles using the skeletal structures of RDX (1,3,5-trinitro-1,3,5-triazacyclohexane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane) and TNAZ (1,3,3-trinitroazetidine) are studied to validate these principles. The effect of substituent groups on density and heats of reaction are examined. The structure, stability and detonation properties of these new molecular systems are presented. Some of these compounds are found to be promising candidates for synthetic studies

    Prevalence of pharmaceuticals and personal care products, microplastics and co-infecting microbes in the post-COVID-19 era and its implications on antimicrobial resistance and potential endocrine disruptive effects

    No full text
    The COVID-19 (coronavirus disease 2019) pandemic's steady condition coupled with predominance of emerging contaminants in the environment and its synergistic implications in recent times has stoked interest in combating medical emergencies in this dynamic environment. In this context, high concentrations of pharmaceutical and personal care products (PPCPs), microplastics (MPs), antimicrobial resistance (AMR), and soaring coinfecting microbes, tied with potential endocrine disruptive (ED) are critical environmental concerns that requires a detailed documentation and analysis. During the pandemic, the identification, enumeration, and assessment of potential hazards of PPCPs and MPs and (used as anti-COVID-19 agents/applications) in aquatic habitats have been attempted globally. Albeit receding threats in the magnitude of COVID-19 infections, both these pollutants have still posed serious consequences to aquatic ecosystems and the very health and hygiene of the population in the vicinity. The surge in the contaminants post-COVID also renders them to be potent vectors to harbor and amplify AMR. Pertinently, the present work attempts to critically review such instances to understand the underlying mechanism, interactions swaying the current health of our environment during this post-COVID-19 era. During this juncture, although prevention of diseases, patient care, and self-hygiene have taken precedence, nevertheless antimicrobial stewardship (AMS) efforts have been overlooked. Unnecessary usage of PPCPs and plastics during the pandemic has resulted in increased emerging contaminants (i.e., active pharmaceutical ingredients and MPs) in various environmental matrices. It was also noticed that among COVID-19 patients, while the bacterial co-infection prevalence was 0.2-51%, the fungi, viral, protozoan and helminth were 0.3-49, 1-22, 2-15, 0.4-15% respectively, rendering them resistant to residual PPCPs. There are inevitable chances of ED effects from PPCPs and MPs applied previously, that could pose far-reaching health concerns. Furthermore, clinical and other experimental evidence for many newer compounds is very scarce and demands further research. Pro-active measures targeting effective waste management, evolved environmental policies aiding strict regulatory measures, and scientific research would be crucial in minimizing the impact and creating better preparedness towards such events among the masses fostering sustainability.This work is funded by SERB (Govt. of India), New Delhi (CVD/2022/000033) & SEED Grant from UPES.Peer reviewe

    Where Brain, Body and World Collide

    Get PDF
    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range 1 < pt < 8 Gev/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy sqrt{s} = 7 TeV using an integrated luminosity of 2.2 nb^{-1}. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs
    corecore