120 research outputs found

    Performance of ALICE AD modules in the CERN PS test beam

    Get PDF
    Two modules of the AD detector have been studied with the test beam at the T10 facility at CERN. The AD detector is made of scintillator pads read out by wave-length shifters (WLS) coupled to clean fibres that carry the produced light to photo-multiplier tubes (PMTs). In ALICE the AD is used to trigger and study the physics of diffractive and ultra-peripheral collisions as well as for a variety of technical tasks like beam-gas background monitoring or as a luminometer. The position dependence of the modules' efficiency has been measured and the effect of hits on the WLS or PMTs has been evaluated. The charge deposited by pions and protons has been measured at different momenta of the test beam. The time resolution is determined as a function of the deposited charge. These results are important ingredients to better understand the AD detector, to benchmark the corresponding simulations, and very importantly they served as a baseline for a similar device, the Forward Diffractive Detector (FDD), being currently built and that will be in operation in ALICE during the LHC Runs 3 and 4.Peer reviewe

    Seroepidemiology of Toxoplasma gondii infection in pregnant women in a public hospital in northern Mexico

    Get PDF
    BACKGROUND: Toxoplasma gondii (T. gondii) infection in pregnant women represents a risk for congenital disease. There is scarce information about the epidemiology of T. gondii infection in pregnant women in Mexico. Therefore, we sought to determine the prevalence of T. gondii infection and associated socio-demographic, clinical and behavioural characteristics in a population of pregnant women of Durango City, Mexico. METHODS: Three hundred and forty three women seeking prenatal care in a public hospital of Durango City in Mexico were examined for T. gondii infection. All women were tested for anti-T. gondii IgM and IgG antibodies by using IMx Toxo IgM and IMx Toxo IgG 2.0 kits (Abbott Laboratories, Abbott Park, IL, USA), respectively. Socio-demographic, clinical and behavioural characteristics from each participant were also obtained. RESULTS: Twenty one out of the 343 (6.1%) women had IgG anti-T. gondii antibodies. None of the 343 women had IgM anti-T. gondii antibodies. Multivariate analysis using logic regression showed that T. gondii infection was associated with living in a house with soil floor (adjusted OR = 7.16; 95% CI: 1.39–36.84), residing outside of Durango State (adjusted OR = 4.25; 95% CI: 1.72–10.49), and turkey meat consumption (adjusted OR = 3.85; 95% CI: 1.30–11.44). Other characteristics as cat contact, gardening, and food preferences did not show any association with T. gondii infection. CONCLUSION: The prevalence of T. gondii infection in pregnant women of Durango City is low as compared with those reported in other regions of Mexico and the majority of other countries. Poor housing conditions as soil floors, residing in other Mexican States, and turkey meat consumption might contribute to acquire T. gondii infection

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Revisión. Ventajas y desventajas de los sistemas de control climático aplicados en agricultura de precisión

    Get PDF
    Today agriculture is changing in response to the requirements of modern society, where ensuring food supply through practices such as water conservation, reduction of agrochemicals and the required planted surface, which guarantees high quality crops are in demand. Greenhouses have proven to be a reliable solution to achieve these goals; however, a greenhouse as a means for protected agriculture has the potential to lead to serious problems. The most of these are related to the inside greenhouse climate conditions where controlling the temperature and relative humidity (RH) are the main objectives of engineering. Achieving appropriate climate conditions to ensure high yield and quality crops reducing energy consumption have been the objective of investigations for some time. Different schemes in control theories have been applied in this field to solve the aforementioned problems. Therefore, the objective of this paper is to present a review of different control techniques applied in protected agriculture to manage greenhouse climate conditions, presenting advantages and disadvantages of developed control platforms in order to suggest a design methodology according to results obtained from different investigations.Hoy en día la agricultura está cambiando de acuerdo a las necesidades de la nueva sociedad. Las nuevas tendencias son asegurar la producción de alimentos a través de prácticas tales como ahorro de agua, reducción en el uso de agroquímicos y el espacio requerido para sembrar los cultivos mientras se garantiza la alta calidad de los cultivos. Los invernaderos han demostrado ser una solución viable para garantizar estos objetivos. Sin embargo, el uso de un invernadero conlleva serios problemas. Los más importantes están relacionados con las condiciones del microclima dentro del invernadero, donde el objetivo de la ingeniería es controlar la temperatura y humedad relativa (RH). Alcanzar las condiciones adecuadas del microclima para garantizar la alta productividad y calidad de los cultivos mientras se reducen los consumos de energía ha sido el objetivo de diversos investigadores a través del tiempo. Diversos esquemas de teoría de control han sido aplicados con el objetivo de resolver los problemas antes mencionados. Por lo tanto, el objetivo de este artículo es presentar una revisión de las diferentes técnicas de control aplicadas en agricultura de precisión para manejar las condiciones del microclima del invernadero, presentando las ventajas y desventajas de los sistemas desarrollados con la finalidad de proponer una metodología de diseño de acuerdo a los resultados obtenidos de las diferentes investigaciones

    Review. Advantages and disadvantages of control theories applied in greenhouse climate control systems

    No full text
    Today agriculture is changing in response to the requirements of modern society, where ensuring food supply through practices such as water conservation, reduction of agrochemicals and the required planted surface, which guarantees high quality crops are in demand. Greenhouses have proven to be a reliable solution to achieve these goals; however, a greenhouse as a means for protected agriculture has the potential to lead to serious problems. The most of these are related to the inside greenhouse climate conditions where controlling the temperature and relative humidity (RH) are the main objectives of engineering. Achieving appropriate climate conditions to ensure high yield and quality crops reducing energy consumption have been the objective of investigations for some time. Different schemes in control theories have been applied in this field to solve the aforementioned problems. Therefore, the objective of this paper is to present a review of different control techniques applied in protected agriculture to manage greenhouse climate conditions, presenting advantages and disadvantages of developed control platforms in order to suggest a design methodology according to results obtained from different investigations
    corecore