98 research outputs found

    MATE, a single front-end ASIC for silicon strip, Si(Li) and CsI detectors

    Get PDF
    MATE (Must ASIC for Time and Energy) will process signals delivered from the hodoscope MUST2. The hodoscope consists of six large area telescopes (100 cm²), each made up of a double sided Si strip detector followed by a Si(Li) and Csi crystal. MATE has sixteen channels and can deliver three types of analogue information per channel; time of flight and energy loss of the detected particle; value of leakage DC current per channel. MATE also gives a trigger logical signal corresponding to the cross over of an adjustable threshold value. The analogue information is transmitted as differential current through twisted pair to the acquisition system based on VXI-C. The slow control is assured via the I2C industrial protocol. The first version of MATE for Si(strip) is available. An update of MATE will allow it to be used for the Si(Li) and Csi detectors. MATE is a novel R&D project for nuclear physics which includes both energy and time measurements with good resolution and high energy dynamic range

    AFTER, the front end ASIC of the T2K Time Projection Chambers

    Get PDF
    The T2K (Tokai-to-Kamioka) experiment is a long baseline neutrino oscillation experiment in Japan. A near detector, located at 280m of the production target, is used to characterize the beam. One of its key elements is a tracker, made of three Time Projection Chambers (TPC) read by Micromegas endplates. A new readout system has been developed to collect, amplify, condition and acquire the data produced by the 124,000 detector channels of these detectors. The front-end element of this system is a a new 72-channel application specific integrated circuit. Each channel includes a low noise charge preamplifier, a pole zero compensation stage, a second order Sallen-Key low pass filter and a 511-cell Switched Capacitor Array. This electronics offers a large flexibility in sampling frequency, shaping time, gain, while taking advantage of the low physics events rate of 0.3 Hz. We detail the design and the performance of this ASIC and report on the deployment of the frond-end electronics on-site

    Tests of Micro-Pattern Gaseous Detectors for Active Target Time Projection Chambers in nuclear physics

    Get PDF
    Active target detection systems, where the gas used as the detection medium is also a target for nuclear reactions, have been used for a wide variety of nuclear physics applications since the eighties. Improvements in Micro-Pattern Gaseous Detectors (MPGDs) and in micro-electronics achieved in the last decade permit the development of a new generation of active targets with higher granularity pad planes that allow spatial and time information to be determined with unprecedented accuracy. A novel active target and time projection chamber (ACTAR TPC), that will be used to study reactions and decays of exotic nuclei at facilities such as SPIRAL2, is presently under development and will be based on MPGD technology. Several MPGDs (Micromegas and Thick GEM) coupled to a 2×2 mm2 pixelated pad plane have been tested and their performances have been determined with different gases over a wide range of pressures. Of particular interest for nuclear physics experiments are the angular and energy resolutions. The angular resolution has been determined to be better than 1° FWHM for short traces of about 4 cm in length and the energy resolution deduced from the particle range was found to be better than 5% for 5.5 MeV α particles. These performances have been compared to Geant4 simulations. These experimental results validate the use of these detectors for several applications in nuclear physics

    X-ray detection with Micromegas with background levels below 106^{-6} keV1^{-1}cm2^{-2}s1^{-1}

    Full text link
    Micromegas detectors are an optimum technological choice for the detection of low energy x-rays. The low background techniques applied to these detectors yielded remarkable background reductions over the years, being the CAST experiment beneficiary of these developments. In this document we report on the latest upgrades towards further background reductions and better understanding of the detectors' response. The upgrades encompass the readout electronics, a new detector design and the implementation of a more efficient cosmic muon veto system. Background levels below 106^{-6}keV1^{-1}cm2^{-2}s1^{-1} have been obtained at sea level for the first time, demonstrating the feasibility of the expectations posed by IAXO, the next generation axion helioscope. Some results obtained with a set of measurements conducted in the x-ray beam of the CAST Detector Laboratory will be also presented and discussed

    Micromegas detector developments for MIMAC

    Full text link
    The aim of the MIMAC project is to detect non-baryonic Dark Matter with a directional TPC. The recent Micromegas efforts towards building a large size detector will be described, in particular the characterization measurements of a prototype detector of 10 ×\times 10 cm2^2 with a 2 dimensional readout plane. Track reconstruction with alpha particles will be shown.Comment: 8 pages, 7 figures Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 2011; corrections on author affiliation

    R2D2 TPC: first Xenon results

    Full text link
    Radial time projection chambers (TPC), already employed in the search for rare phenomena such as light Dark Matter candidate, could provide a new detection approach for the search of neutrinoless double beta decay (ββ0ν\beta\beta0\nu). The assessment of the performances of such a detector for ββ0ν\beta\beta0\nu search is indeed the goal of the Rare Decays with Radial Detector (R2D2) R\&D. Promising results operating a spherical TPC with argon up to 1~bar have been published in 2021. Supplementary measurements were recently taken extending the gas pressure range up to 3~bar. In addition, a comparison between two detector geometries, namely spherical (SPC for spherical proportional counter) and cylindrical (CPC for cylindrical proportional counter), was performed. Using a relatively simple gas purification system the CPC detector was also operated with xenon at 1~bar: an energy resolution of 1.4\% full-width at half-maximum was achieved for drift distances up to 17~cm. Much lower resolution was observed with the SPC. These results are presented in this article.Comment: 16 pages 14 figure

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.

    Performance of the First ANTARES Detector Line

    Get PDF
    In this paper we report on the data recorded with the first Antares detector line. The line was deployed on the 14th of February 2006 and was connected to the readout two weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken from selected runs during the first six months of operation are presented. Performance figures in terms of time residuals and angular resolution are given. Finally the angular distribution of atmospheric muons is presented and from this the depth profile of the muon intensity is derived.Comment: 14 pages, 9 figure

    Description and commissioning of NEXT-MM prototype: first results from operation in a Xenon-Trimethylamine gas mixture

    Get PDF
    A technical description of NEXT-MM and its commissioning and first performance is reported. Having an active volume of similar to 35 cm drift x 28 cm diameter, it constitutes the largest Micromegas-read TPC operated in Xenon ever constructed, made by a sectorial arrangement of the 4 largest single wafers manufactured with the Microbulk technique to date. It is equipped with a suitably pixelized readout and with a sufficiently large sensitive volume (similar to 23 l) so as to contain long (similar to 20 cm) electron tracks. First results obtained at 1 bar for Xenon and Trymethylamine (Xe-(2%) TMA) mixture are presented. The TPC can accurately reconstruct extended background tracks. An encouraging full-width half-maximum of 11.6% was obtained for similar to 29 keV gammas without resorting to any data post-processing

    Time projection chambers for the T2K near detectors

    Get PDF
    The T2K experiment is designed to study neutrino oscillation properties by directing a high intensity neutrino beam produced at J-PARC in Tokai, Japan, towards the large Super-Kamiokande detector located 295 km away, in Kamioka, Japan. The experiment includes a sophisticated near detector complex, 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to better understand neutrino interactions at the energy scale below a few GeV. A key element of the near detectors is the ND280 tracker, consisting of two active scintillator-bar target systems surrounded by three large time projection chambers (TPCs) for charged particle tracking. The data collected with the tracker is used to study charged current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. The tracker is surrounded by the former UA1/Nomad dipole magnet and the TPCs measure the charges, momenta, and particle types of charged particles passing through them. Novel features of the TPC design include its rectangular box layout constructed from composite panels, the use of bulk micromegas detectors for gas amplification, electronics readout based on a new ASIC, and a photoelectron calibration system. This paper describes the design and construction of the TPCs, the micromegas modules, the readout electronics, the gas handling system, and shows the performance of the TPCs as deduced from measurements with particle beams, cosmic rays, and the calibration system
    corecore