158 research outputs found

    Characterization of the South Atlantic marine boundary layer aerosol using an Aerodyne Aerosol Mass Spectrometer

    No full text
    International audienceMeasurements of the submicron fraction of the atmospheric aerosol in the marine boundary layer were performed from January to March 2007 (Southern Hemisphere summer) onboard the French research vessel Marion Dufresne in the Southern Atlantic and Indian Ocean (20° S?60° S, 70° W?60° E). For chemical composition measurements an Aerodyne High-Resolution-Time-of-Flight AMS was used to measure mass concentrations and species-resolved size distributions of non-refractory aerosol components in the submicron range. Within the "standard" AMS compounds (ammonium, chloride, nitrate, sulfate, organics) "sulfate" is the dominating species in the marine boundary layer reaching concentrations between 50 ng m?3 and 3 ?g m?3. Furthermore, what is seen as "sulfate" by the AMS seems to be mostly sulfuric acid. Another sulfur containing species that can ubiquitously be found in marine environments is methanesulfonic acid (MSA). Since MSA has not been directly measured before with an AMS, and is not part of the standard AMS analysis, laboratory experiments needed to be performed in order to be able to identify it within the AMS raw data and to extract mass concentrations for MSA from the field measurements. To identify characteristic air masses and their source regions backwards trajectories were used and averaged concentrations for AMS standard compounds were calculated for each air mass type. Sulfate mass size distributions were measured for these periods showing a distinct difference between oceanic air masses and those from African outflow. While the peak size in the mass distribution was roughly 250 nm in marine air masses it was shifted to 470 nm in African outflow air. Correlations between the mass concentrations of sulfate, organics and MSA were calculated which show a narrow correlation for MSA with sulfate/sulfuric acid coming from the ocean but not with continental sulfate

    Variability of aerosol, gaseous pollutants and meteorological characteristics associated with changes in air mass origin at the SW Atlantic coast of Iberia

    Get PDF
    Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (<b>D</b>iel <b>O</b>xidant <b>M</b>echanisms <b>I</b>n relation to <b>N</b>itrogen <b>O</b>xides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean, a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM<sub>1</sub> and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol (NR-PM<sub>1</sub>) was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O<sub>3</sub>, SO<sub>2</sub>, NO, NO<sub>2</sub>, CO<sub>2</sub>) and a weather station provided meteorological parameters. <br><br> Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m<sup>−3</sup> and 1000 cm<sup>−3</sup>. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM<sub>1</sub>-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition, small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions, could be identified in the particle phase. <br><br> In all air masses passing the continent the organic aerosol fraction dominated the total NR-PM<sub>1</sub>. For this reason, using Positive Matrix Factorization (PMF) four organic aerosol (OA) classes that can be associated with various aerosol sources and components were identified: a highly-oxygenated OA is the major component (43% OA) while semi-volatile OA accounts for 23%. A hydrocarbon-like OA mainly resulting from industries, traffic and shipping emissions as well as particles from wood burning emissions also contribute to total OA and depend on the air mass origin. <br><br> A significant variability of ozone was observed that depends on the impact of different air mass types and solar radiation

    Application of mobile aerosol and trace gas measurements for the investigation of megacity air pollution emissions: the Paris metropolitan area

    Get PDF
    For the investigation of megacity emission development and the impact outside the source region, mobile aerosol and trace gas measurements were carried out in the Paris metropolitan area between 1 July and 31 July 2009 (summer conditions) and 15 January and 15 February 2010 (winter conditions) in the framework of the European Union FP7 MEGAPOLI project. Two mobile laboratories, MoLa and MOSQUITA, were deployed, and here an overview of these measurements and an investigation of the applicability of such measurements for the analysis of megacity emissions are presented. Both laboratories measured physical and chemical properties of fine and ultrafine aerosol particles as well as gas phase constituents of relevance for urban pollution scenarios. The applied measurement strategies include cross-section measurements for the investigation of plume structure and quasi-Lagrangian measurements axially along the flow of the city's pollution plume to study plume aging processes. Results of intercomparison measurements between the two mobile laboratories represent the adopted data quality assurance procedures. Most of the compared measurement devices show sufficient agreement for combined data analysis. For the removal of data contaminated by local pollution emissions a video tape analysis method was applied. Analysis tools like positive matrix factorization and peak integration by key analysis applied to high-resolution time-of-flight aerosol mass spectrometer data are used for in-depth data analysis of the organic particulate matter. Several examples, including a combination of MoLa and MOSQUITA measurements on a cross section through the Paris emission plume, are provided to demonstrate how such mobile measurements can be used to investigate the emissions of a megacity. A critical discussion of advantages and limitations of mobile measurements for the investigation of megacity emissions completes this work

    Investigating organic aerosol loading in the remote marine environment

    Get PDF
    Aerosol loading in the marine environment is investigated using aerosol composition measurements from several research ship campaigns (ICEALOT, MAP, RHaMBLe, VOCALS and OOMPH), observations of total AOD column from satellite (MODIS) and ship-based instruments (Maritime Aerosol Network, MAN), and a global chemical transport model (GEOS-Chem). This work represents the most comprehensive evaluation of oceanic OM emission inventories to date, by employing aerosol composition measurements obtained from campaigns with wide spatial and temporal coverage. The model underestimates AOD over the remote ocean on average by 0.02 (21 %), compared to satellite observations, but provides an unbiased simulation of ground-based Maritime Aerosol Network (MAN) observations. Comparison with cruise data demonstrates that the GEOS-Chem simulation of marine sulfate, with the mean observed values ranging between 0.22 μg m−3 and 1.34 μg m−3, is generally unbiased, however surface organic matter (OM) concentrations, with the mean observed concentrations between 0.07 μg m−3 and 0.77 μg m−3, are underestimated by a factor of 2–5 for the standard model run. Addition of a sub-micron marine OM source of approximately 9 TgC yr−1 brings the model into agreement with the ship-based measurements, however this additional OM source does not explain the model underestimate of marine AOD. The model underestimate of marine AOD is therefore likely the result of a combination of satellite retrieval bias and a missing marine aerosol source (which exhibits a different spatial pattern than existing aerosol in the model)

    an inclusive view of saharan dust advections to italy and the central mediterranean

    Get PDF
    Abstract We address observations of physical and chemical properties of Saharan dust advections (SDA) as observed in the Central Mediterranean basin, within the framework of the LIFE+10, DIAPASON project ( www.diapason-life.eu ). DIAPASON aimed at the definition of best practices and tools to detect and evaluate the contribution of Saharan dust to ground particulate matter (PM) loads. Polarization-sensitive, automated lidar-ceilometers (PLC) are one of the tools prototyped and used in the Rome area to reach this goal. The results presented in this study focus on: 1) the effectiveness of various observational tools at detecting and characterizing atmospheric dust plumes, and 2) processes and properties of Saharan dust advections reaching the central Mediterranean region. In this respect, the combination of numerical model forecasts and time-resolved (at least hourly) PLC or chemical observations was found to constitute an efficient way to predict and confirm the presence of Saharan dust. In the period 2011–2014, Saharan dust advections were observed to reach over Rome on about 32% of the days. In some 70% of these days the dust reached the ground in dry conditions, while 30% of advection days involved wet deposition. Dry (wet) deposition was found to maximize (minimize) in summer. The northern Sahara between Algeria and Tunisia (Grand Erg Oriental), was confirmed as the most frequent region of origin of the dust mobilized towards central Italy. Secondary source regions include northern Morocco and Libya. On a statistical basis, Saharan advections to Rome were preceded by increasing atmospheric pressure and stability. These conditions were found to favor the accumulation of aerosols related to local emission sources before the SDA reached the ground. Meteorology (precipitation and turbulence in primis) resulted to be an important modulator of PM concentrations during SDAs. Magnitude and timing of these factors should be well considered to correctly evaluate the dust share in PM loads or the related health effects. Saharan advections observed during DIAPASON affected particle concentrations down to diameters of about 0.6–1 μm, with number concentrations peaking at the 2.5 μm diameter range. These advections were associated with a significant increase in Si-rich particles containing a non-negligible fraction of water. Rainfall was observed to preferentially remove dust particles larger than 2 μm, causing a significant depletion in the Ca-rich fraction with respect to the Si-rich one. The increase in PLC depolarization ratios above 5%, as well as the hourly PIXE records of the Si/Ca ratio increasing above 1 were found to represent good markers for the actual presence of Saharan dust particulate matter, when Saharan advection conditions are occurring

    Constraints on instantaneous ozone production rates and regimes during DOMINO derived using in-situ OH reactivity measurements

    Get PDF
    In this study air masses are characterized in terms of their total OH reactivity which is a robust measure of the reactive air pollutant loading . The measurements were performed during the DOMINO campaign (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) held from 21/11/2008 to 08/12/2008 at the Atmospheric Sounding Station - El Arenosillo (37.1° N-6.7° W, 40 m a.s.l.). The site was frequently impacted by marine air masses (arriving at the site from the southerly sector) and air masses from the cities of Huelva (located NW of the site), Seville and Madrid (located NNE of the site). OH reactivity values showed strong wind sector dependence. North eastern continental air masses were characterized by the highest OH reactivities (average: 31.4 ± 4.5 s−1; range of average diel values: 21.3-40.5 s−1), followed by north western industrial air masses (average: 13.8 ± 4.4 s−1; range of average diel values: 7-23.4 s−1) and marine air masses (average: 6.3 ± 6.6 s−1; range of average diel values: below detection limit −21.7 s−1), respectively. The average OH reactivity for the entire campaign period was ~18 s−1 and no pronounced variation was discernible in the diel profiles with the exception of relatively high values from 09:00 to 11:00 UTC on occasions when air masses arrived from the north western and southern wind sectors. The measured OH reactivity was used to constrain both diel instantaneous ozone production potential rates and regimes. Gross ozone production rates at the site were generally limited by the availability of NOx with peak values of around 20 ppbV O3 h−1. Using the OH reactivity based approach, derived ozone production rates indicate that if NOx would no longer be the limiting factor in air masses arriving from the continental north eastern sector, peak ozone production rates could double. We suggest that the new combined approach of in-situ fast measurements of OH reactivity, nitrogen oxides and peroxy radicals for constraining instantaneous ozone production rates, could significantly improve analyses of upwind point sources and their impact on regional ozone levels

    In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

    Get PDF
    International audiencePublished by Copernicus Publications on behalf of the European Geosciences Union. 9578 M. Beekmann et al.: Evidence for a dominant regional contribution to fine particulate matter levels Abstract. A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radio-carbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin , i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant , flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies

    Adsorptive uptake of water by semisolid secondary organic aerosols

    Get PDF
    Aerosol climate effects are intimately tied to interactions with water. Here we combine hygroscopicity measurements with direct observations about the phase of secondary organic aerosol (SOA) particles to show that water uptake by slightly oxygenated SOA is an adsorption-dominated process under subsaturated conditions, where low solubility inhibits water uptake until the humidity is high enough for dissolution to occur. This reconciles reported discrepancies in previous hygroscopicity closure studies. We demonstrate that the difference in SOA hygroscopic behavior in subsaturated and supersaturated conditions can lead to an effect up to about 30% in the direct aerosol forcinghighlighting the need to implement correct descriptions of these processes in atmospheric models. Obtaining closure across the water saturation point is therefore a critical issue for accurate climate modeling.Peer reviewe
    • …
    corecore