590 research outputs found

    Pattern scaling the parameters of a Markov-Chain gamma-distribution daily precipitation generator

    Get PDF
    General circulation models (GCMs) are the most sophisticated tools at our disposal for studying future climates, but there are limitations to overcome. These include resolutions that may be too coarse for impact assessments, limited or zero availability of some policy-relevant scenarios, and limited time-series length for assessing the risk of extreme events. We illustrate how these limitations can be addressed by combining a stochastic precipitation generator (SPG) with pattern scaling (PS) of its key parameters. Computationally inexpensive, SPG parameters can be perturbed to generate time-series representative of weather under a future climate with high spatial and temporal resolution. If the SPG parameter perturbations are derived directly from GCM simulations projections can only be made for scenarios already simulated by the GCM. Instead, we obtain the parameter perturbations using PS, facilitating emulation of scenarios not necessarily explicitly simulated by the GCM, and where we scale perturbations approximately linearly with global temperature change. PS is commonly applied to estimate perturbations in the mean of climate variables, but rarely to higher-order parameters as we demonstrate here. We apply PS for the first time, globally, to the parameters of a daily, first-order Markov-chain gamma-distribution SPG using output from the IPSL-CM6A-LR GCM to perturb an SPG fitted to observed data from two stations in diverse climates (Santarém, Brazil and Reykjavik, Iceland) to illustrate this novel approach. We produce time series corresponding to a range of GWLs and demonstrate the capability of the combined SPG-PS approach to study local-scale, future daily precipitation characteristics, climate and subsequent risk of extreme weather events

    An analysis of observed daily maximum wind gusts in the UK

    Get PDF
    The greatest attention to the UK wind climatology has focused upon mean windspeeds, despite a knowledge of gust speeds being essential to a variety of users. This paper goes some way to redressing this imbalance by analysing observed daily maximum gust speeds from a 43-station network over the period 1980–2005. Complementing these data are dynamically downscaled reanalysis data, generated using the PRECIS Regional Climate Modelling system, for the period 1959–2001. Inter-annual variations in both the observed and downscaled reanalysis gust speeds are presented, with a statistically significant (at the 95% confidence interval) 5% increase across the network in daily maximum gust speeds between 1959 and the early 1990s, followed by an apparent decrease. The benefit of incorporating dynamically downscaled reanalysis data is revealed by the fact that the decrease in gust speeds since 1993 may be placed in the context of a very slight increase displayed over the longer 1959–2001 period. Furthermore, the severity of individual windstorm events is considered, with high profile recent events placed into the context of the long term record. A daily cycle is identified from the station observations in the timing of the daily maximum gust speeds, with an afternoon peak occurring between 12:00–15:00, exhibiting spatial and intra-annual variations

    High-resolution monitoring of catchment nutrient response to the end of the 2011-2012 drought in England, captured by the demonstration test catchments.

    Get PDF
    The Demonstration Test Catchments (DTC) project is a UK Government funded initiative to test the effectiveness of on-farm mitigation measures designed to reduce agricultural pollution without compromising farm productivity. Three distinct catchments in England have been chosen to test the efficacy of mitigation measures on working farms in small tributary sub-catchments equipped with continuous water quality monitoring stations. The Hampshire Avon in the south is a mixed livestock and arable farming catchment, the River Wensum in the east is a lowland catchment with predominantly arable farming and land use in the River Eden catchment in the north-west is predominantly livestock farming. One of the many strengths of the DTC as a national research platform is that it provides the ability to investigate catchment hydrology and biogeochemical response across different landscapes and geoclimatic characteristics, with a range of differing flow behaviours, geochemistries and nutrient chemistries. Although numerous authors present studies of individual catchment responses to storms, no studies exist of multiple catchment responses to the same rainfall event captured with in situ high-resolution nutrient monitoring at a national scale. This paper brings together findings from all three DTC research groups to compare the response of the catchments to a major storm event in April 2012. This was one of the first weather fronts to track across the country following a prolonged drought period affecting much of the UK through 2011–2012, marking an unusual meteorological transition when a rapid shift from drought to flood risk occurred. The effects of the weather front on discharge and water chemistry parameters, including nitrogen species (NO3-N and NH4-N) and phosphorus fractions (total P (TP) and total reactive P (TRP)), measured at a half-hourly time step are examined. When considered in the context of one hydrological year, flow and concentration duration curves reveal that the weather fronts resulted in extreme flow, nitrate and TP concentrations in all three catchments but with distinct differences in both hydrographs and chemographs. Hysteresis loops constructed from high resolution data are used to highlight an array of potential pollutant sources and delivery pathways. In the Hampshire Avon DTC, transport was dominated by sub-surface processes, where phosphorus, largely in the soluble form, was found to be transport-limited. In the Wensum DTC, transport was largely dominated by rapid sub-surface movement due to the presence of under-drainage, which mobilised large quantities of nitrate during the storm. In the Eden DTC, transport was found to be initially dominated by surface runoff, which switched to subsurface delivery on the falling limb of the hydrograph, with the surface delivery transporting large amounts of particulate phosphorus to the river, with a transport-limited response. The lack of exhaustion of nutrient delivery in response to such extreme flow generation indicates the size of the nutrient pools stored in these catchments, and highlights the scale of the challenges faced by environmental managers when designing mitigation measures to reduce the flux of nutrients to UK river systems from diffuse agricultural sources

    Lactoferrin impact on gut microbiota in preterm infants with late-onset sepsis or necrotising enterocolitis: the MAGPIE mechanisms of action study

    Get PDF
    Background: Preterm infants have high rates of morbidity, especially from late-onset sepsis and necrotising enterocolitis. Lactoferrin is an anti-infective milk protein that may act through effects on gut bacteria, metabolites and epithelial cell function. The impact of supplemental lactoferrin in reducing late-onset sepsis was explored in the Enteral LactoFerrin In Neonates (ELFIN) trial. Objectives: The Mechanisms Affecting the Gut of Preterm Infants in Enteral feeding (MAGPIE) study was nested within the ELFIN trial and aimed to determine the impact of lactoferrin on gut microbiota and bacterial function, and changes preceding disease onset. We aimed to explore impacts on the stool bacteria and faecal/urinary metabolome using gas and liquid chromatography–mass spectrometry, and explore immunohistological pathways in resected tissue. Methods: Preterm infants from 12 NHS hospitals were enrolled in the study, and daily stool and urine samples were collected. Local sample collection data were combined with ELFIN trial data from the National Perinatal Epidemiology Unit, Oxford. The longitudinal impact of lactoferrin in healthy infants was determined, and samples that were collected before disease onset were matched with samples from healthy control infants. Established, quality-controlled 16S ribonucleic acid, gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry analyses were conducted. Validated databases and standardised workflows were used to identify bacteria and metabolites. Tissue samples from infants undergoing surgery and matched controls were analysed. Results: We recruited 479 preterm infants (mean gestation of 28.4 ± 2.3 weeks) and collected > 33,000 usable samples from 467 infants. 16S ribonucleic acid bacterial analysis was conducted on samples from 201 infants, of whom 20 had necrotising enterocolitis and 51 had late-onset sepsis, along with samples from healthy matched controls to explore longitudinal changes. The greatest change in relative bacterial abundance over time was observed in Staphylococcus, which decreased from 42 at aged 7–9 days to only 2 at aged 30–60 days (p < 0.001). Small but significant differences in community composition were observed between samples in each ELFIN trial group (R2 = 0.005; p = 0.04). Staphylococcus (p < 0.01), Haemophilus (p < 0.01) and Lactobacillus (p = 0.01) showed greater mean relative abundance in the placebo group than in the lactoferrin group. Gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry analyses showed that lactoferrin had limited impact on the metabolome. Liquid chromatography–mass spectrometry showed significant metabolite differences between necrotising enterocolitis or late-onset sepsis infants and healthy controls. The resected gut tissue analysis revealed 82 differentially expressed genes between healthy and necrotic tissue. Limitations: Although we recruited a large number of infants, collecting daily samples from every infant is challenging, especially in the few days immediately preceding disease onset. Conclusion: We conducted a large mechanistic study across multiple hospital sites and showed that, although lactoferrin significantly decreased the level of Staphylococcus and other key pathogens, the impact was smaller than those of other clinical variables. Immunohistochemistry identified multiple inflammatory pathways leading to necrotising enterocolitis and showed that the use of NHS pathology archive tissue is feasible in the context of a randomised controlled trial. Future work: We observed significant changes in the stool and urinary metabolome in cases preceding late-onset sepsis or necrotising enterocolitis, which provide metabolic targets for a future mechanistic and biomarker study. Trial registration: Current Controlled Trials ISRCTN12554594. Funding: This project was funded by the Efficacy and Mechanism Evaluation (EME) programme, a Medical Research Council (MRC) and National Institute for Health Research (NIHR) partnership. This will be published in full in Efficacy and Mechanism Evaluation; Vol. 8, No. 14. See the NIHR Journals Library website for further project information

    Forecasts of fog events in northern India dramatically improve when weather prediction models include irrigation effects

    Get PDF
    Dense wintertime fog regularly impacts Delhi, severely affecting road and rail transport, aviation and human health. Recent decades have seen an unexplained increase in fog events over northern India, coincident with a steep rise in wintertime irrigation associated with the introduction of double-cropping. Accurate fog forecasting is challenging due to a high sensitivity to numerous processes across many scales, and uncertainties in representing some of these in state-of-the-art numerical weather prediction models. Here we show fog event simulations over northern India with and without irrigation, revealing that irrigation counteracts a common model dry bias, dramatically improving the simulation of fog. Evaluation against satellite products and surface measurements reveals a better spatial extent and temporal evolution of the simulated fog events. Increased use of irrigation over northern India in winter provides a plausible explanation for the observed upward trend in fog events, highlighting the critical need for optimisation of irrigation practices

    Clinical risk stratification of paediatric renal transplant recipients using C1q and C3d fixing of de novo donor-specific antibodies

    Get PDF
    Introduction: We have previously shown that children who developed de novo donor-specific human leukocyte antigen (HLA) antibodies (DSA) had greater decline in allograft function. We hypothesised that patients with complement-activating DSA would have poorer renal allograft outcomes. Methods: A total of 75 children developed DSA in the original study. The first positive DSA sample was subsequently tested for C1q and C3d fixing. The primary event was defined as 50% reduction from baseline estimated glomerular filtration rate and was analysed using the Kaplan–Meier estimator. Results: Of 65 patients tested, 32 (49%) and 23 (35%) tested positive for C1q and C3d fixing, respectively. Of the 32 C1q-positive (c1q+) patients, 13 (41%) did not show concomitant C3d fixing. The mean fluorescence intensity values of the original immunoglobulin G DSA correlated poorly with complement-fixing positivity (C1q: adjusted R2 0.072; C3d: adjusted R2 0.11; p < 0.05). C1q+ antibodies were associated with acute tubulitis [0.75 ± 0.18 (C1q+) vs. 0.25 ± 0.08 (C1q−) episodes per patient (mean ± standard error of the mean; p < 0.05] but not with worse long-term renal allograft dysfunction (median time to primary event 5.9 (C1q+) vs. 6.4 (C1q−) years; hazard ratio (HR) 0.74; 95% confidence ratio (CI) 0.30–1.81; p = 0.58]. C3d-positive (C3d+) antibodies were associated with positive C4d histological staining [47% (C3d+) vs. 20% (C3d−); p = 0.04] and with significantly worse long-term allograft dysfunction [median time to primary event: 5.6 (C3d+) vs. 6.5 (C3d−) years; HR 0.38; 95% CI 0.15–0.97; p = 0.04]. Conclusion: Assessment of C3d fixing as part of prospective HLA monitoring can potentially aid stratification of patients at the highest risk of long-term renal allograft dysfunction

    British Manual Workers: From Producers to Consumers, c.

    Full text link

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    Building health research systems: WHO is generating global perspectives, and who’s celebrating national successes?

    Get PDF
    In 2016, England’s National Institute for Health Research (NIHR) celebrated its tenth anniversary as an innovative national health research system with a focus on meeting patients’ needs. This provides a good opportunity to reflect on how the creation of the NIHR has greatly enhanced important work, started in 1991, to develop a health research system in England that is embedded in the National Health Service. In 2004, WHO identified a range of functions that a national health research system should undertake to improve the health of populations. Health Research Policy and Systems (HRPS) has taken particular interest in the pioneering developments in the English health research system, where the comprehensive approach has covered most, if not all, of the functions identified by WHO. Furthermore, several significant recent developments in thinking about health research are relevant for the NIHR and have informed accounts of its achievements. These include recognition of the need to combat waste in health research, which had been identified as a global problem in successive papers in the Lancet, and an increasing emphasis on demonstrating impact. Here, pioneering evaluation of United Kingdom research, conducted through the impact case studies of the Research Excellence Framework, is particularly important. Analyses informed by these and other approaches identified many aspects of NIHR’s progress in combating waste, building and sustaining research capacity, creating centres of research excellence linked to leading healthcare institutions, developing research networks, involving patients and others in identifying research needs, and producing and adopting research findings that are improving health outcomes. The NIHR’s overall success, and an analysis of the remaining problems, might have lessons for other systems, notwithstanding important advances in many countries, as described in papers in HRPS and elsewhere. WHO’s recently established Global Observatory for Health Research and Development provides an opportunity to promote some of these lessons. To inform its work, the Observatory is sponsoring a thematic series of papers in HRPS focusing on health research issues such as funding flows, priority setting, capacity building, utilisation and equity. While important papers on these have been published, this series is still open to new submissions

    Impact of ICRF on the scrape-off layer and on plasma wall interactions: From present experiments to fusion reactor

    Get PDF
    Recent achievements in studies of the effects of ICRF (Ion Cyclotron Range of Frequencies) power on the SOL (Scrape-Off Layer) and PWI (Plasma Wall Interactions) in ASDEX Upgrade (AUG), Alcator C-Mod, and JET-ILW are reviewed. Capabilities to diagnose and model the effect of DC biasing and associated impurity production at active antennas and on magnetic field connections to antennas are described. The experiments show that ICRF near-fields can lead not only to E×B convection, but also to modifications of the SOL density, which for Alcator C-Mod are limited to a narrow region near antenna. On the other hand, the SOL density distribution along with impurity sources can be tailored using local gas injection in AUG and JET-ILW with a positive effect on reduction of impurity sources. The technique of RF image current cancellation at antenna limiters was successfully applied in AUG using the 3-strap AUG antenna and extended to the 4-strap Alcator C-Mod field-aligned antenna. Multiple observations confirmed the reduction of the impact of ICRF on the SOL and on total impurity production when the ratio of the power of the central straps to the total antenna power is in the range 0.6<Pcen_{cen}/Ptotal_{total}<0.8. Near-field calculations indicate that this fairly robust technique can be applied to the ITER ICRF antenna, enabling the mode of operation with reduced PWI. On the contrary, for the A2 antenna in JET-ILW the technique is hindered by RF sheaths excited at the antenna septum. Thus, in order to reduce the effect of ICRF power on PWI in a future fusion reactor, the antenna design has to be optimized along with design of plasmafacing components
    corecore