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Abstract 

Greatest attention to the UK wind climatology has focused upon mean windspeeds, despite a 

knowledge of gust speeds being essential to a variety of users. This paper goes some way to 

redressing this imbalance by analysing observed daily maximum gust speeds from a 43-station 

network over the period 1980-2005. Complementing these data are dynamically downscaled 

reanalysis data, generated using the PRECIS Regional Climate Modelling system, for the period 

1959-2001. Inter-annual variations in both the observed and downscaled reanalysis gust speeds are 

presented, with a statistically significant (at the 95% confidence interval) 5% increase across the 

network in daily maximum gust speeds between 1959 and the early 1990s, followed by an apparent 

decrease. The benefit of incorporating dynamically downscaled reanalysis data is revealed by the 

fact that the decrease in gust speeds since 1993 may be placed in the context of a very slight 

increase displayed over the longer 1959-2001 period. Furthermore, the severity of individual 

windstorm events is considered, with high profile recent events placed into the context of the long 

term record. A daily cycle is identified from the station observations in the timing of the daily 

maximum gust speeds, with an afternoon peak occurring between 12:00-15:00, exhibiting spatial 

and intra-annual variations. 
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1. Introduction  

 While the surface mean wind regime of the UK is reasonably well documented (Barrow and 
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Hulme, 1997; Palutikof et al., 1997; Sinden, 2005), literature regarding observed gust speeds is 

rather sparse. It is desirable to first establish the difference between mean windspeed and gust 

speeds. The World Meteorological Organisation refers to mean windspeeds as the average 

windspeed recorded over a 10- to 60-minute period, while gust speeds are typically measured over 

2-3 seconds (WMO, 2008). Long, continuous, homogeneous records of both mean windspeeds and 

gust speeds in Europe, though highly desirable, are largely unavailable (Rockel and Woth, 2007). A 

knowledge of the local characteristics of gust speeds is directly relevant, for example, to those 

involved in the design of structures (Ambrose and Vergun, 1995), sailing activities (Spark and 

Connor, 2004; Strefford, 2002), wind energy (Pryor et al., 2005; Sinden, 2007), the insurance sector 

(Klawa and Ulbrich, 2003; Leckebusch et al., 2007), aviation (Manasseh and Middleton, 1999), the 

forestry industry (Usbeck et al., 2010) and those considering the effects of wind driven rain (Choi, 

1997). 

 The Association of British Insurers estimates that average annual insured losses from wind -

related domestic property damage in the UK are in excess of £340m (ABI, 2005), with over 200,000 

properties suffering damage each year (Blackmore and Tsokri, 2004). The impact of windstorms on 

the UK is significant, with record economic losses in the region of £5bn (in 2011 values) for the 16th 

October 1987 event (Munich Re, 1999). Wind damage, and subsequently insured loss, is 

disproportionately related to the peak gust speed of a storm (Munich Re, 2002; Spence et al., 1998), 

with Hawker (2007) reporting that a 25% increase in peak gust speed can result in a 650% increase 

in damage. Compounding this is the increase in the number of people living in areas at risk from 

windstorm damage (ABI, 2005; IPCC, 2007). 

The effect of wind gusts on structures (gust loading) has traditionally been assessed by 

multiplying the mean wind force by a Gust Loading Factor (Kareem and Zhou, 2003). Wind loading 

effects over the course of a lifetime of a structure have long been a subject of research and design 

codes (e.g. the Eurocode for wind loading BSEN 1991-1-4). The majority of research into the effects 

of extreme wind and gust speeds on structures utilise statistical methods (Bierbooms and Cheng, 

2002; Cook, 1982; Pandy et al., 2001; Bierbooms et al., 2001), in order to establish values with 

return periods in excess of several hundred years (which clearly exceed the length of any 



observational records).  

Temporal trends in gust speeds may be of particular importance to several sectors , including 

those involved in the design and construction of structures. A limited number of studies consider the 

historic variability of the upper percentiles of observed (Hanson and Goodess, 2004) and modelled 

(Knippertz et al., 2000; Rockel and Woth, 2007) mean windspeeds but not gust speeds, nor do they 

consider any pattern to the time of the day when these high windspeeds tend to occur or the 

associated wind directions. The time of the day that the highest mean windspeeds and gust speeds 

are recorded can significantly influence the severity of their impact. For example, casualties during 

the 16th October 1987 windstorm in the UK would likely have been substantially greater had the peak 

windspeeds occurred during daylight hours, when more people would have been outside and/or 

travelling (Baxter et al., 2001). Preferred wind directions associated with the highest gust speeds 

may also have implications in the design of the built environment. 

 In order to remedy the lack of a documented gust speed database for the UK, a long, 

continuous record of gust speeds is presented here for a network of 43 stations. Unlike existing 

records, this paper focuses upon long-term measurements of wind gusts rather than mean 

windspeeds, which are of direct relevance to several sectors. In addition to observed gust speeds, 

dynamically downscaled data generated by a regional climate model are also considered, permitting 

an analysis of the UK wind gust regime back to 1959. Dynamical downscaling is a method of 

generating high-resolution climate information from relatively coarse-resolution global climate models 

(GCMs). Typical GCM spatial resolutions exceed 200 km, while many impact models require 

information at a scale of 50 km or less, thus necessitating an approach to estimate finer -scale 

information. Dynamical downscaling utilises a limited-area, high-resolution model (a regional climate 

model, or RCM) driven by boundary conditions from a GCM to derive more detailed finer-resolution 

information. 

The following section describes the data and methodology, including a discussion of how the 

modelled windspeed data are generated. Inter- and intra-annual temporal and spatial variations in 

gust speeds are identified and quantified in section 3, in addition to several notable features of the 

wind gust regime. The final section summarises the outcomes, draws a number of conclusions, and 



highlights potential applications of the dataset established here.  

 

2. Methods and Materials 

2.1 Observed Wind Data 

 This study analyses hourly surface windspeed observations (measured at the standard 10-

metre height) from 43 UK Met Office stations across the UK over the period 1980-2005. Wind data 

were extracted from two UK Met Office datasets: the Met Office Land Surface Data (UK Met Office, 

2006b) and MIDAS (Met Office Integrated Data Archive System) Land Surface Observations Station 

data (UK Met Office, 2006a), stored at the British Atmospheric Data Centre. The daily maximum gust 

speed (DMGS), i.e. the highest gust speed observed in the period 00:00-23:59 UTC each day, is 

extracted for each station, along with the associated hour of occurrence and wind 

-second average windspeed, with the Met Office observing stations 

typically reporting the maximum value recorded in each hour. Given the nature of this discourse, it is 

important to differentiate between the 

discussed elsewhere in the literature (e.g. Hanson and Goodess (2004), Hanson et al. (2004),  

Leckebusch and Ulbrich (2004), Rockel and Woth (2007)). Extreme windspeeds generally refer to the 

upper percentiles (e.g. 95th or 98th) of mean windspeeds (usually a 10-minute average windspeed).  

Section 3 of this paper includes a discussion of extreme DMGS, hereby defined as the 98 th percentile 

of DMGS, which by definition refers to the 190 days in the 1980-2005 record with the highest 

observed gust speeds. The 98th percentile threshold is specifically selected as it is of particular 

importance to those considering the various wind applications previously described.  The 98th 

percentile value of DMGS has been shown to be related to wind damage and subsequent insured 

loss in Germany (Klawa and Ulbrich, 2003) and Great Britain (Hewston, 2008).  

 Due to changes in the UK Met Office monitoring network throughout the years, a small 

percentage of gust speeds are measured over 1.5 seconds (e.g. manually analysed anemographs 

and certain automatic weather stations). However, due to scaling errors (of approximately 5%) in 

some automatic weather stations the difference between the 3-second measurement and 1.5-second 

measurement may be offset (UK Met Office, 2007).  Furthermore, calibration errors (likely in the 



region of 5%) in manually derived anemographs exist which again may offset the reduced 

measurement period (UK Met Office, 2007). A lack of meta-data prevents the identification of periods 

when these errors may have occurred. However, given that these errors are within the bounds of the 

maximum measurement error of 10% stipulated by the UK Met Office, in conjunction with the lack of 

meta-data, no data transformation is applied to account for these potential inhomogeneities.  

 Station moves are common within the UK Met Office network. Several stations with 

documented moves were excluded from this study following the discovery of inhomogeneities in the 

windspeed records. However, two stations with documented moves were retained since no 

statistically significant differences could be found in the windspeed data before and after their 

relocation. This is likely due to the short distance of the station displacement (less than 200 metres in 

both cases). A further source of inhomogeneity may lie in the changing instrumentation throughout 

the years. However, this is generally restricted to issues of anemometer start -up speeds, and 

therefore redundant when considering DMGS, as these are, by definition, at the high end of the gust 

speed distribution. The difficulties of establishing a long, homogeneous record of windspeed, briefly 

highlighted here, are well understood, and further detailed by Best et al. (2008), Usbeck et al. (2010) 

and Tuller (2004) amongst others.  Overall, the errors in the data appear to be less than 10%, the 

upper UK Met Office limit of error, which should be borne in mind during the interpretation of the 

results. 

 Figure 1 shows the location of the UK Met Office stations utilised in this study, with Table 1 

detailing their altitude and the number of days with missing data. Stations with greater than 5% of 

missing days were removed from the network. One exception, Durham, exceeds this threshold, but is 

retained due to the dearth of windspeed information in the north-east of England.  

 

2.2 Regional climate model wind data 

 In order to extend the record provided by the observational data and to place this station data 

in a longer context, dynamically downscaled reanalysis data are utilised for the period 1959-2001. 

Reanalysis data provides a historical analysis of the atmosphere, land and sea surface conditions, 

and is generated from a variety of products such as past operational forecasts, land- and ship-based 



observations, radiosonde data and satellite observations. The European Centre for Medium-range 

Weather Forecasts (ECMWF) reanalysis product, ERA40 (described in Uppala et al., 2005), were 

dynamically downscaled from a 1.875o (east-west) by 1.250o (north-south) spatial resolution to 0.22o 

by 0.22o 

Climates for Impact Studies) system. This dataset, henceforth known as PRECIS-Re, is kindly 

regional climate model HadRM3P, with Jones et al. (2004) providing a thorough description of the 

system and full technical details of the model. HadRM3P does not incorporate gust parameterisation, 

instead a daily maximum windspeed is output based on the 576 2.5-minute mean windspeeds 

simulated for each day. While the magnitude of daily maximum windspeeds simulated by regional 

climate models is underestimated in comparison to observations, they do provide a reasonable proxy 

when considering temporal trends (Jungo et al., 2002; Leckebusch et al., 2006). 

It is instructive here to consider the relative strengths and weaknesses of the observed and 

PRECIS-Re datasets. Surface windspeeds in reanalysis data are largely governed by model physics 

and the observational data assimilated into the reanalysis model. Although downscaling results in a 

significant increase in resolution, the PRECIS model still simulates windspeeds at a spatial resolution 

(25 km) that does not completely resolve small scale features at the surface (e.g. convective 

turbulent effects, small scale eddies and channelling of flow in urban environments). Such features 

are more likely to be captured in the observed dataset. However, observed data may be subject to 

inhomogeneities due to instrumental changes, stations moves, land use changes, and missing data. 

With careful quality control by the UK Met Office and the authors the observational data utilised in 

this study may be considered as being largely free of such inhomogeneities.  

 The comparison of gridded climate model data to station observations carries with it its own 

limitations, described by Moberg and Jones (2004) and Osborn and Hulme (1997) amongst others.  

In order to directly compare gridded data with station observations, data are extracted  from the grid 

cell whose centre has the nearest coordinates to the observation station. If that grid cell is 

over the model sea) then data from the nearest land) grid cell is utilised (but not one which is 

more than two moves north-south or east-west). PRECIS-Re is subsequently presented and 



discussed in terms of stations (directly comparable to the observation stations), although clearly the 

values represent those of whole grid-cells. It is not the intention here to thoroughly assess the 

reliability of the downscaling process, but merely to utilise the data in order to extend the gust speed 

record prior to 1980. 

  

3. Results and discussion 

3.1 Geographic variation of DMGS 

 The highest recorded gust speed in the 1980-2005 period in the monitoring network of 43 

stations analysed here is the 50 ms-1 gust recorded at Kirkwall (station 42), Orkney on 29th January 

2000. This figure may be compared with other station records (which are not considered here due to 

length of record discrepancies); the record low-altitude gust speed published by the UK Met Office is 

63.3 ms-1 at Fraserburgh, Aberdeenshire, on 13th February 1989, while the record high-altitude value 

is 77.3 ms-1 at Cairngorm (1,245 m above sea level), on 20th March 1986 (UK Met Office, 2010). 

During the course of the study Aberporth (14), Lerwick (43), Salsburgh (36) and Stornoway Airport 

(41) all recorded gusts exceeding 45 ms-1. Figure 2 presents a range of DMGS statistics for each of 

the stations in the network. The directions from which the DMGS originated at each station, a sample 

of which are presented in Figure 3, are dominated by the south-west sector of the compass, varying 

from 189o to 216o (DMGS wind roses show little difference to mean windspeed roses in this respect). 

If only extreme DMGS values (i.e. those exceeding the 98th percentile, and shown to be related to 

structural damage) are considered a similar pattern is revealed by the wind roses, although the 

prevalence of DMGSs in the south-west sector is even more pronounced. 

 Geographic variations of DMGS (and indeed extreme DMGS) are partly dictated by the 

proximity of stations to the coast, in particular the west coast (despite an east coast station, Kirkwall, 

recording the highest maximum gust speed); higher gust speeds are recorded a t stations located on 

the south-west England peninsular and the Welsh and Scottish coasts, compared to those recorded 

further inland. These results are expected since reduced friction over the sea results in increased 

windspeeds on the coast, given an appropriate fetch. These results are in line with spatial variations 

of mean windspeeds across the UK described by Palutikof et al. (1997) and Wheeler and Mayes 



(1997). This offers some validation to the quality of the dataset, and the network of stations, utilised 

here. 

 Inland, gust speeds are generally lowest in the south-east region of England, and increase 

with latitude. However, the prominence of coastal stations in Scotland (there are only two inland 

Scottish stations in the network considered here) acts to mask latitudinal variations. Stations located 

at higher latitudes tend to be exposed to a greater number of extratropical cyclones, and 

subsequently record higher DMGS values; baroclinic zones along the polar front promote cyclone 

development, which then track across the North Atlantic with their centres commonly following a path 

between Scotland and Iceland. This is not to say southern parts of the UK are exempt from damaging 

windspeeds, as testified by the October 1987 storm. However, return periods for high windspeeds 

tend to be lower with increasing latitude. For a more thorough description of the temporal and spatial 

variations of the North Atlantic storm track readers are directed to Rogers (1997) and Dacre and 

Gray (2009) and references therein. 

 

3.2 Temporal variations of DMGS 

variation (e.g. Garrad Hassan, 2010; Windmonitor, 2010). Such an index enables temporal variations 

across a number of stations to be assessed, without the inherent spatia l variation in windspeeds 

unduly impacting the results. In order to assess the long-term variation in DMGS values across the 

network, annual means of DMGS are calculated for each station. In order that geographic variations 

in absolute DMGS values do not unduly bias the results, annual mean values are compared to the 

long-term average (1980-2001). These annual anomalies are subsequently averaged across the 

network, and presented in the form of percentages in Figure 4, and as such may be directly 

comparable to wind indices. Positive values indicate stronger than average gust speeds, and 

negative values imply below average gust speeds.  

Trends in the annual anomalies of PRECIS-Re and observed gust speeds between 1980 and 

2001, shown in Figure 4, correlate well (R2 = 0.83), enhancing confidence in the PRECIS-Re values 

prior to 1980. A clear downturn can be seen since 1993, with observed values dropping more than 



6% by 2005, compared to the long term average. This trend is in line with Atkinson et al. (2006) and 

Boccard (2009), who also identify a drop in windspeeds across Europe between the early 1990s and 

2005. It is of interest to note that annual anomalies of extreme DMGS (not shown) (i.e. just the top 

2% of DMGS) reveal a very similar pattern, with nearly a 15% decrease from 1993 to 2005 in the 

observed values, while the PRECIS-Re value drops 5% between 1993 and 2001. This peak in gust 

speeds in the early 1990s is in line with Usbeck et al. (2010) who, for the period 1931-2007, report a 

peak in the early 1990s in the number of days on which the highest maximum gust speeds occurred 

in Zurich. 

Across the station network observed DMGS values display a slight, but statistically significant, 

decline of 5% (equivalent to 0.02 ms-1 per year) from 1980 to 2005 (statistical significance is 

considered at the 95% confidence interval throughout this paper). Observed DMGS trends downward 

at 35 stations (of which 12 exhibit statistically significant decreases), while significant upward trends 

are found at two stations. There appears to be no coherent spatial pattern in these trends with 

significant decreases seen at stations across the UK, while the two statistically significant increases 

occur at Culdrose (1) and Heathrow (11). For comparison, over a similar period (limited to 1980-2001 

by data availability) PRECIS-Re data also suggest a similar decline in DMGS values. However, over 

the longer 1959-2001 period PRECIS-Re data reveal increasing values at all locations, with the 

network as a whole exhibiting a statistically significant 3% increase (equivalent to 0.01 ms-1 per 

year). The greatest increases are found at locations in northern England and in Scotland. The period 

over which inter-annual variations are considered is crucial with regard to the evidence and 

robustness of the trends identified here. 

 Long-term seasonal variations in DMGS values are also evident. Between 1980 and 2005, 

autumn (September-November) observed DMGS values decrease by 8% (0.04 ms-1 per year), with 

over a quarter of the stations displaying statistically significant decreases. The majority of these 

stations are located in Scotland, with two in Cornwall and three in central and northern England. 

Significant decreases are found at 8 stations in summer (June  August) and 7 stations in spring 

(March  May), with winter (December  February) exhibiting the weakest downward trend in DMGS 

values, with only 3 stations showing significant decreases and one showing a significant increase. 



The stations exhibiting decreases in spring, summer and winter mean values generally correspond 

with those showing the decreasing trends in autumn described above. Meanwhile, long-term variation 

in winter and autumn values of DMGS in the PRECIS-Re data appear to be the drivers in the upward 

trend of annual values, with increases found at all stations in these seasons between 1959 and 2001.  

 If only extreme DMGS are considered observed values indicate a (statistically insignificant) 

decline of 8% (0.08 ms-1 per year) between 1980 and 2005. Of the 38 stations exhibiting downward 

trends 12 show significant decreases. Six of these stations are located in southern England, with five 

in northern England and southern Scotland. The greatest decreases in these stations are shown in 

southern England at Camborne (2) (0.21 ms-1 per year), St Mawgan (4) (0.10 ms-1 per year), East 

Malling (9) (0.14 ms-1 per year) and Manston (10) (0.19 ms-1 per year). 

 In the period 1980-2001 extreme DMGS values in the PRECIS-Re dataset suggest no 

spatially coherent long-term trend across the UK, with network annual mean value increasing less 

than 0.004 ms-1 per year. However between 1959 and 2001 a (statistically insignificant) decrease of 

6% in extreme DMGS values is seen (equivalent to a decrease of 0.02 ms-1 per year). 

 Further examination of the inter-annual trends in observed and PRECIS-Re DMGS values 

reveal that they are largely driven by winter values. Winter is also the dominant season for the 

occurrence of extreme gusts, with 59% (63%) of observed (PRECIS-Re) extreme DMGSs occurring 

in this season. A major mode of atmospheric variability in the Northern Hemisphere is the North 

Atlantic Oscillation (NAO), which exhibits strong inter-decadal variability. The strength of the NAO is 

assessed using an index based on the difference between the normalised sea level pressure 

between Gibraltar and Southwest Iceland (Jones et al., 1997). Inter-annual variations in observed 

and PRECIS-Re DMGS are consistent with known NAO variations.  Generally, a more positive NAO 

index coincides with higher DMGS values; logical given that during this phase the prevailing westerly 

winds are stronger. Although a thorough investigation of this relationship is beyond the scope of this 

paper the upward trend in the NAO index between the late 1960s and early 1990s, linked to 

increases in geostrophic windspeeds in that period (Alexandersson et al., 2000; Matulla et al., 2007), 

is likely driving the upward trend shown by the PRECIS-Re data. 

 Observed DMGS values are lowest in 1987, with the annual mean anomaly 1.5 ms-1 



(equivalent to 9.5%) below the long term average, while extreme values are nearly 3 ms-1 below 

average.  The Great Storm of 16th October 1987 set records for insured loss in the UK, causing 

extensive structural damage across large swaths of the UK. Results presented here suggest gust 

speeds were markedly below average that year, and this may have contributed to the degree of 

damage experienced during the storm, with structures and trees not recently exposed to high 

windspeeds.   

While the analysis of annual mean anomalies of DMGS provide valuable information, it is also 

informative to consider the interannual variability of the occurrence of extreme DMGSs. Figure 5 

shows the number of days per year on which the extreme DMGSs (i.e. the highest 2%) occur. Yet 

again a maximum is reached in the early 1990s in both the observed and PRECIS-Re values. 

However, it is interesting to note that while several of the peaks in Figure 5 match those in Figure 4, 

(e.g. 1974, and 1990) there are several years when this is not the case (e.g. 1962 and 1993). It 

seems that in these years, despite having below average DMGS, an above average number of 

extreme DMGS occurred. To emphasise this the UK experienced a severe windstorm in January 

1962 which caused extensive structural damage (Palutikof et al., 1997; Lamb and Frydendahl, 1991). 

year in terms of wind gust speeds (the 1962 annual 

mean DMGS anomaly is +0.6%) the potential for structural damage resulting from high windspeeds is 

not necessarily reduced. 

 Figure 5 demonstrates that PRECIS-Re is skilful in accurately capturing inter-annual 

variations in the frequency of high-percentile gusts, with respect to observations. Nevertheless it 

should be noted that negative biases in the absolute magnitude of PRECIS-Re DMGS, arising largely 

from unresolved small-scale processes, are significant (approaching 40%) and are analysed and 

discussed in detail by Hewston (2008). As outlined in section 2.2, reliably modelling maximum gust 

speeds with RCMs presents a major challenge due to the length of the model timesteps involved. 

Methodologies to derive gust speeds from RCMs output, through gust parameterisation and, or in 

combination with, statistical methods, are largely based on the surface mean windspeed variable 

(Cvitan, 2003; Goyette et al., 2003; Pinto et al., 2009). Values of surface windpseed, and their 

variability, are generally reliably captured by RCMs, and therefore analyses of relative (rather than 



absolute) trends in model gust speed may be considered indicative of trends in observed gusts 

(Leckebusch et al., 2006).  

 

3.3 Time of occurrence of DMGS 

 The hour in which the DGMS is recorded each day, at every station in the period 1980 to 

2005, is shown in Figure 6. A clear and smooth diurnal cycle is evident, with prominent peaks at 

13:00-15:00 and 23:00-01:00 UTC. The average DMGS recorded in each time band ranges from 11.8 

ms-1 (at 15:00-15:59) to 14.6 ms-1 (04:00-04:59). If this analysis is limited to extreme DMGS, a similar 

pattern is revealed by the network as a whole, and also by individual stations (Figure 8). This pattern 

is still evident when the analyses are limited to DMGS exceeding absolute thresholds of 20, 25 and 

30 ms-1. These are significant thresholds since it is common practice for insurance companies to 

validate claims for wind-related damage when a nearby observation station measures a gust speed 

exceeding 20-25 ms-1. 

The peak in occurrence of the DMGS in the afternoon results from a greater likelihood of 

atmospheric instability since a positively driven lapse rate (temperature falling with height due to 

surface heating) facilitates mixing and downdrafts from the synoptically driven winds at a higher 

level; thermally driven vertical mixing leads to the transfer of momentum to the surface manifesting in 

the form of gusts. Since this process is dependent on solar radiation it follows that the afternoon 

peak in the timing of DMGS should vary seasonally, as demonstrated in Figure 7, with the afternoon 

maximum occurring 1-2 hours earlier in winter compared with summer. 

 The presence of a nocturnal peak may, in part, be an artefact of the method in which DMGS 

data are recorded. While more recent wind observations report the maximum gust speed in each 

hour, data extracted from anemographs only include the maximum gust speed observed in the 24-

hour period 00:00-23:59 UTC. Hence, in order to maintain consistency the DMGS variable utilised 

here is calculated over this 24-hour period. However, if a storm, for example, passes over a station at 

23:45 recording the DMGS, it is likely that the DMGS for the following day will be associated with the 

same storm, and would likely be recorded in the 00:00-00:59 time band. This may result in some 

double counting in the period 22:00 02:00, with the same weather feature registering twice in the 



DMGS record, producing a misleading nocturnal peak. In order to quantify the degree to which this 

may 

whereby a DMGS on two consecutive days could not be recorded within 4, 6, 8, 10, and 12 hours of 

each other (i.e. if two successive DMGS are recorded in the period 22:00-01:59, 21:00-02:59, 20:00-

03:59, 19:00-04:59 and 18:00-05:59 respectively, the lower value is discarded). As a result the 

frequency of DMGS in the 22:00-02:00 period was reduced by 9%, 13%, 16%, 19% and 22% 

respectively, demonstrating that the nocturnal peak is moderated but not entirely removed by this 

methodology. Results shown in Figures 6, 7 and 8 are those produced utilising a 12-hour buffer 

period, and further demonstrate the apparent robustness of the nocturnal maximum. 

 Figure 8 presents a selection of histograms displaying the diurnal variation in the timing of 

DMGSs at select individual stations. Coastal stations show a reduction in the afternoon peak 

compared with inland stations, epitomised by Aberporth (14), which recorded over 750 instances of 

the DMGS occurring between 23:00-23:59 UTC, while just over 400 were recorded between 12:00-

12:59 UTC. Inland stations tend to produce histograms with a more emphasised maximum in the 

afternoon. Afternoon maxima likely result from surface heating and subsequent instability in surface 

layers through convection. Such a process will be damped at more temperate coastal stations, and 

hence the magnitudes of the afternoon peaks are reduced. In these locations the time of occurrence 

of DMGS is largely governed by the somewhat random passage of frontal systems.  

 The histograms produced at the inland stations Middle Wallop (8), Nottingham Watnall (20), 

Bingley (27) and Salsburgh (36), increasing consecutively in latitude, suggest that the afternoon peak 

occurs progressively later with latitude. This demonstrates the effect of longer day lengths at higher 

latitudes in summer months.  

 

3.4 Storm Severity Index 

Downscaled reanalysis data (PRECIS-Re) provides an opportunity to assess the severity of 

individual windstorm events occurring prior to 

Palutikof et al. (1997), who rank windstorms based on their maximum 

recorded windspeed, duration and area affected, the relative severities of individual windstorm 



events are estimated here using the DMGS and the number of affected properties. A proposed 

severity index is presented here, designed to reflect the potential destructiveness of the storm, as 

well as incorporating some measure of the socio-economic exposure to it. Therefore, a windstorm 

with exceptional gust speeds over northern Scotland (with a sparse property density), may result in a 

lower severity index than a storm with lower gust speeds centred over London.  

The severity index is calculated in the following manner. Initially extreme DMGS values are 

scaled by the local 98th percentile value of DMGS at each station, producing values that can be 

considered representative of storm intensity independent of non-meteorological factors such as 

altitude and exposure. The local 98th percentile value is utilised as this has been shown to be a 

threshold for wind damage (Klawa and Ulbrich, 2003; Hewston, 2008). These values are then cubed 

(since the advection of kinetic energy is proportional to the cube of windspeed) and interpolated 

across the UK; a methodology consistent with Dorland et al. (2000) and Klawa and Ulbrich (2003). 

From the interpolated layer a value is extracted for each postcode sector in the UK, and scaled 

according to the number of properties in that sector. In order that storms may be directly comparable 

the property density from 2001 is utilised in all cases to calculate the storm severity. The severity 

index of each storm is reported as a percentage of the most severe storm in the record. Storm events 

with a severity index exceeding 10% are shown in Figure 9.  

In addition to the peak in gust speeds in the early 1990s described above, the occurrence of 

severe storm events also peaks in that decade. The number of storms with a severity index 

exceeding 5% occurring in the 1990s is nearly double the number in any other decade in the record. 

While it is difficult to assess the accuracy of Figure 9 due to a lack of appropriate data (e.g. insured 

loss information), similarities do exist between this record and that suggested by Palutikof et al. 

(1997). Notable events occurring in both datasets include 16th February 1962, 9th February 1988 and 

1st February 1983, which rank 1st, 2nd and 8th respectively in the Palutikof et al. (1997) catalogue in 

the period 1959-1990. This may prove a valuable tool in placing recent or future windstorms into a 

long-term context, especially as historical evidence may be somewhat limited for storms prior to 

1980, as they were often under-reported. 

 



4. Conclusions 

The characteristics of UK wind gust regime are presented here, based on data from a 43-station 

observation network over a continuous 26-year period. Spatial variations have been identified, with 

stations located on the west coast shown to consistently record higher daily maximum gust speeds 

(DMGSs) than those on the east coast and inland. The prevalence of DMGSs from the south-west 

quadrant of the compass is even more emphasised when only extreme DMGSs (i.e. the highest 2% of 

DMGSs, which are those related structural damage) are considered.  

Temporal trends in DMGS and extreme DMGS values may be summarised in the following manner; 

(i) Observed DMGS values show a statistically significant decline between 1980 and 2005, dropping 

5% (equivalent to 0.02 ms-1 per year) across the network. Negative trends are similarly found in the 

PRECIS-Re data between 1980 and 2001. However, if the longer (1959-2001) PRECIS-Re dataset is 

considered a slight, but statistically significant, increase of 3% (equivalent to 0.01 ms-1 per year) in DMGS 

values is suggested. This increase is driven by marked increases in DMGS values in northern England 

and Scotland. These trends are in line with those identified in mean windspeeds by Atkinson et al. (2006) 

and Boccard (2009).  

(ii)  Observed extreme DMGS exhibit a statistically significant decline of 8% (equivalent to 0.08 ms-1 

per year) between 1980 and 2005. These decreases are greatest (up to 0.22 ms-1 per year) in stations in 

southern England. No statistically significant trend is shown by extreme DMGS values in the PRECIS-Re 

dataset in either the corresponding period (1980-2001), or in the longer 1959-2001 period. 

By considering the observed data in conjunction with the PRECIS-Re data it appears that values of 

DMGS rose steadily from 1959, peaking in the early 1990s, and subsequently underwent a more rapid 

decline into the 21st century. Both DMGS and extreme DMGS wind indices peaked in 1993, a result in line 

with other wind indices calculated for various other regions in north-west Europe (Atkinson et al., 2006; 

Boccard, 2009). However, some caution must be exercised in the interpretation of the decline in values 

post-1993, due to the extent of data available after the peak (PRECIS-Re terminates in 2001, and the 

observed data in 2005). In addition to the peak in DMGS values in the early 1990s, the frequency of 

extreme DMGSs appear to peak at the same time, a result in line with (Usbeck et al., 2010). These 



variations are likely driven by decadal variations in the large scale atmospheric circulation, with temporal 

variations in the NAO index correlating well with the inter-annual variations in DMGS and extreme DMGS. 

Various metrics calculated in this study suggest interannual variations in observed gust speeds are in 

general agreement with those derived from dynamically downscaled reanalysis data (i.e. PRECIS-Re). 

However, long term temporal variations in observed mean windspeeds and those derived from 

reanalyses have been shown to differ in other locations, such as in the Netherlands (Smits et al., 2005), 

the USA (Pryor et al., 2009) and Australia (McVicar et al., 2008). The reliability of the PRECIS-Re data is 

dependent upon the quality and reliability of data assimilation in the ERA40 project. This dataset is 

generated by employing historic observational data to constrain models producing information on the 

background state of the atmosphere. Biases in these analyses can therefore be reduced by incorporating 

more observational data. Greater reliability of reanalysis data has been demonstrated for the period 

following the introduction of meteorological observations from satellites (1979 onwards) (Bengtsson et al., 

2004; Simmons et al., 2004), and should be borne in mind when considering the PRECIS-Re data for the 

period 1959-1979.  

In addition to putting recent inter-annual variations in the observed record of DMGS in context, the 

PRECIS-Re data allows the impact of historic windstorms to be compared to those occurring in the more 

recent past, which tend to be better documented (e.g. windstorm Erwin (8th 

Storm (25th January 1990) and the Great Storm (16th October 1987)). A storm severity index is proposed 

here using DMGS data and the number of impacted properties. Several potentially high-impact storms 

are identified dating back to 1959, a timeseries likely to be of interest to those in a number of sectors, 

including building design and the insurance industry.  

The presence of an afternoon maximum in the time of occurrence of DMGS, even for the highest gust 

speeds, has been identified at every station considered in this study. Spatial variations in this peak do 

exist, with the peaks at stations in the northern parts of the UK lagging up to 2 hours compared with 

stations in the south. While this peak is primarily of meteorological interest, the timing of maximum wind 

gusts does have some bearing on the vulnerability of people to during windstorms. 

As identified at the outset, part of the structural design process includes estimating the gust 

loading on a building. Extreme gust speed values required in building design codes cannot be 



calculated directly from the wind gust record generated here as even the 42-year PRECIS-Re 

dataset is too short to be used to directly extract gust speeds with 100-250-year return periods. 

However, the dataset could be used in conjunction with statistcial methods (e.g. Payer and 

Küchenhoff, 2004) to improve estimates of extreme gust speeds with return periods in that range. 

The ability of future generations to efficiently adapt to future climates is partially reliant on the current 

generation proactively and profitably managing climate change (e.g. alterations of building and urban 

design) (Roaf et al., 2009). Historic changes in the UK wind gust regime have been quantified in this 

paper, and provide a basis on which to assess the potential risk posed by future severe windstorms in a 

changed climate. It is highly likely that the frequency and intensity of extreme extratropical cyclones will 

vary in the future (IPCC, 2007). Yin (2005) and Knippertz et al. (2000) project a poleward shift in the 

extratropical cyclone track in the Northern Hemisphere over the course of this century. This likely explains 

the findings by Leckebusch et al. (2006), who project increases of up to 8% in winter extreme mean 

windspeeds over the UK in the period 2071-2100, with simultaneous decreases in the total number of 

extratropical cyclones. Future UK climate simulations reveal a reduced return period for extreme 

windspeeds (Della-Marta and Pinto, 2009) in conjunction with an increased number of extreme cyclones 

(Pinto et al., 2009). The link between the positive phase of the NAO and high gust speeds in the UK has 

been confirmed in this paper, with a similar relationship to high windspeeds in Europe shown by Gulev et 

al. (2001), Pinto et al. (2009) and Raible (2007). Increases in the frequency of future extreme windspeeds 

described in the above studies is likely a result of the tendency to a more positive phase of the NAO in 

future climates simulated by most GCMs (Stephenson et al., 2006). 
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No. Station Elevation 
(m above sea level) % Missing Days 

1 Culdrose 78 3.61 
2 Camborne 87 0.04 
3 Plymouth Mountbatten 50 1.33 
4 St Mawgan 103 0.01 
5 Hurn 10 3.71 
6 Yeovilton 20 1.12 
7 Chivenor 6 3.29 
8 Middle Wallop 90 0.47 
9 East Malling 33 2.32 

10 Manston 44 0.51 
11 Heathrow 25 0.28 
12 Lyneham 145 1.95 
13 Wattisham 89 0.01 
14 Aberporth 115 0.14 
15 Bedford 85 0.88 
16 Wittering 73 0.49 
17 Coltishall 17 0.19 
18 Shawbury 72 3.39 
19 Bala 163 2.83 
20 Nottingham Watnall 117 0.22 
21 Cranwell 62 0.36 
22 Coningsby 6 1.21 
23 Waddington 68 0.22 
24 Valley 10 0.4 
25 Ringway 69 1.18 
26 Blackpool Squires Gate 10 1.39 
27 Bingley 262 3.04 
28 Church Fenton 8 0.52 
29 Ronaldsway 16 0.18 
30 Leeming 32 0.2 
31 Aldergrove 68 0.41 
32 Durham 102 7.57 
33 West Freugh 11 0.06 
34 Eskdalemuir 242 0.48 
35 Machrihanish 10 0.2 
36 Salsburgh 277 2.53 
37 Leuchars 10 0.43 
38 Dunstaffnage 3 1.76 
39 Kinloss 5 3.78 
40 Lossiemouth 6 0.03 
41 Stornoway Airport 15 0.28 
42 Kirkwall 26 0.65 
43 Lerwick 82 0.15 

 

  

Table 1 - Elevation and data capture of wind monitoring network


